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Abstract: Quantifying evapotranspiration (ET) is crucial for a valid understanding of the global
water cycle and for the precise management of the resource. However, accurately estimating ET,
especially at large scales, has always been a challenge. Over the past five decades, remote sensing has
emerged as a cost-effective solution for estimating ET at regional and global scales. Numerous models
have been developed, offering valuable insights into ET dynamics, allowing for large-scale, accurate,
and continuous monitoring while presenting varying degrees of complexity. They mainly belong
to two categories despite the variability of their empirical or physical components: temperature
and conductance-based models. This comprehensive review synthesizes the fundamental theories
and development history of the most used temperature-based models. It focuses on this specific
category to maintain conciseness and prevent extended work. It describes the approaches used
and presents the chronology of the modifications made and suggested by researchers. Moreover, it
highlights the validation studies and the models’ advantages and drawbacks. The review addresses
the long-standing challenge of accurately quantifying evapotranspiration at different scales, offers a
retrospective comparative analysis spanning a 15-year period, and supports practitioners in selecting
the most appropriate model for a specific set of conditions. Moreover, it discusses advancements in
satellite missions, such as the Copernicus Space Component and Landsat Next, and their impact on
enhancing ET estimation models.

Keywords: evapotranspiration; temperature-based models; remote sensing

1. Introduction

Evapotranspiration (ET), the combined process of evaporation and transpiration, is
an essential component of the water cycle [1]. Therefore, an accurate estimation of ET is
crucial to achieving efficient and sustainable water resource management [2,3]. ET refers to
the process by which water changes from a liquid to a gaseous state from different surfaces,
including plants, soil, and open water bodies. Transpiration, on the other hand, refers to
the water released mainly by the plant leaves after being extracted by roots [4,5]. However,
according to [6], quantification of ET has always been difficult due to an imperceptible
process exclusively in an ecosystem or a watershed spatial scale with the desired level
of accuracy.

Estimating evapotranspiration involves direct and indirect methods. The most accu-
rate methods are the direct or on-site measurements (i.e., lysimeter, eddy covariance, sap
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flow) [7]. For large-scale areas, hence, over a non-homogeneous area, a variety of surface
accessory measurements are needed. On-site measurements are expensive and are mainly
used to calibrate other ET estimation methods [8]. Remote sensing (RS) is recognized as the
only reliable, cost-effective, and practical technology for mapping regional and mesoscale
ET using surface radiances and surface energy balance components [9,10]. The significant
advantages of this technology compared to conventional methods can be summarized in
three main points: (1) vast and continuous spatial coverage, (2) cost-effectiveness, and
(3) monitoring where man-made measurements are difficult or unavailable [11].

Relying on RS, many models were developed for ET estimation. They range from
simple models requiring data about the average temperature of air, length of the day,
and development stage of the crop to complex models requiring more data such as daily
radiation, temperature, vapor pressure, wind velocity, etc. There is not a distinctive model
that can be used in all the conditions and not all of them are similarly reliable and accurate
for different regions, thus, different climatological conditions.

Solar radiation plays a key role in the field of remote sensing. It consists of various
components, and understanding these components is important for accurately estimating
the energy inputs that drive evapotranspiration. The partitioning of net solar radiation at
the land surface includes sensible, latent, and ground heat fluxes (H, LE, and G, respectively).
The ET process involving phase changing of water from liquid or solid to vapor, absorbs
energy and cools the land surface. The accompanying energy to this process in known as
latent heat. It is important to mention that conventional techniques like eddy covariance
(EC) have often been used to measure the ecosystem–atmosphere exchange of water vapor
and sensible heat, but they do not offer spatial distribution on a regional scale and are
primarily employed for validation purposes [12–14].

Remote sensing models for ET estimation are varied. Classifying them enables us to
address their complexity and diversity and consequently select the most suitable for the
specific environmental conditions, considering the data availability. Classification also sup-
ports the comparative analysis of the models, allows for the evaluation of their performance,
identifies advantages and drawbacks, promotes advanced research in specific categories,
simplifies communication, and enhances understanding among a broader audience. How-
ever, it remains a challenging task, as the complexity is determined by the interplay of
their empirical and physical components [15]. This study considers two main categories of
models: temperature-based and conductance-based models. Temperature-based ET models
use land surface temperature (LST) from thermal remote sensing to calculate the sensible
heat flux and estimate the latent heat flux as a residual of the surface energy balance from
which ET is derived. Alternatively, LST can be used to estimate the evaporative fraction,
which is then used to derive ET [16]. On the other hand, conductance-based ET models
typically employ the Penman–Monteith (P–M) equation, utilizing shortwave remote sens-
ing data [17]. A crucial aspect of these models is the canopy conductance to water vapor,
which is influenced by factors such as canopy structure and leaf stomatal conductance.
Canopy structural parameters are determined using shortwave remote sensing data, and
stomatal conductance can be estimated through various methods. By linking the carbon
and water cycles, the stomatal conductance can be consistently derived from the plant’s
photosynthesis rate [18].

Within the temperature-based category, three subclasses can be identified: one-source,
two-sources, and contexture-based models. One-source models integrate soil and veg-
etation components into a unified component to estimate ET, while two-source models
separately consider soil and vegetation inputs. Contexture-based models were designed to
leverage the information derived from LST across areas with varying vegetation fractions
(f v) through a vegetation index such as the Normalized Difference Vegetation Index (NDVI).

Recent contributions in the field of ET estimation have included comprehensive
reviews that consolidate and analyze existing knowledge and methods. These reviews
provide valuable insights into the strengths, limitations, and advancements in the field,
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helping to guide future research and application. Notable contributions include the works
of [5,9,16,17,19].

Future Earth Observation missions show the technological advancement that is des-
tined to come in the near future that will lead to more accurate results in the field of remote
sensing related to ET estimation.

The paper starts by discussing the surface energy balance as a cornerstone in under-
standing variables related to ET and RS, focusing on components such as the sensible heat
flux, ground heat flux, and latent heat flux. It then progresses to explore temperature-based
ET models, including single-source and two-source surface energy balance and contexture-
based ET models, detailing their advantages, drawbacks, and the evolution of research in
this area. Subsequently, it delves into the intercomparison of these models through the
related studies that were performed during the last fifteen years. Following, emerging
earth observation missions and advancements in the field are discussed.

By contributing to the consolidation of core theories and tracing the evolution of
temperature-based evapotranspiration (ET) estimation methods, this study delves into the
concept of surface energy balance. It underscores the significance of validation studies and
enhancements conducted by researchers. Through a comparative analysis of the strengths
and limitations of these methods, this effort aims to provide a solid foundation for future
progress in the field.

2. The Surface Energy Balance: A Cornerstone in Understanding ET and RS
Derived Variables

Enhancing the comprehension of the connections between ET and remotely sensed
derived variables entails providing a concise overview of the energy balance.

It is important to note that this overview does not cover extensively all aspects, as it
specifically focuses on commonly utilized models. For a more comprehensive understand-
ing of specific concepts, readers can refer to exhaustive overviews [9,16].

The surface energy balance equation is a fundamental concept in studying the ex-
change of energy at the Earth’s surface. Accounting for four components, the equation can
be expressed as follows:

Rn = H + G + LE + ∆H (1)

where

• Rn is the net radiation represented as the sum of net downward and upward shortwave
and longwave radiation (W·m−2);

• H refers to the sensible heat flux representing the transfer of heat between the surface
and the atmosphere (W·m−2);

• G is the ground or soil heat flux, which represents the transfer of heat into or out of
the ground (W·m−2)

• LE represents the latent heat flux, which accounts for the energy used during evapo-
transpiration processes (W·m−2)

• ∆H (W·m−2) accounts for the heat storage in biomass and canopy air space that is
often neglected in calculations [9].

2.1. The Net Radiation (Rn)

Rn is the total heat energy resulting from the combination of net downward shortwave
radiation and net longwave radiation that represent, respectively, the balance between
incoming and outgoing short-wave and long-wave radiations. Rn is expressed as follows:

Rn = (1 − α)Rs + εaσT4
a − εsσT4

s (2)

where α is the surface shortwave albedo, that is, the fraction of incoming shortwave
radiation reflected by the surface. Rs, often referred to as insolation, measures the amount
of solar radiation received by a specific surface area. It encompasses the incident solar
radiation, which can be either the photosynthetically active radiation within the visible
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spectrum or the total shortwave radiation. (W·m−2). εa and εs are, respectively, the
atmospheric and the surface emissivity. σ is the Stefan-Boltzmann constant (W·m−2·K−4).
Ta and Ts are, respectively, the air and surface temperature (K).

2.2. The Sensible Heat Flux (H)

The sensible heat flux refers to the rate at which heat is transferred to the air through
convection and conduction, resulting from the difference between the air and the surface
temperature. The magnitude of H relies heavily on both the temperature difference between
the surface and the air, and the resistance of the surface to heat transfer. Unlike one-source,
two-source surface energy balance models consider the separate contributions of soil and
canopy to the overall heat flux. Early studies played an important role in the development
of these models. Notable examples of the initial two-source surface energy balance models
include the Two-Source Model introduced by [20].

In the case of the single source approach, the calculation of H implies considering one
source resistance resulting from both the soil and the canopy. The formula for calculating
H under these circumstances is expressed as follows:

H = ρaCp
Taero − Ta

rr
(3)

where ρa is the air density (kg·m−3), Cp is the specific heat of the air (J·kg−1·K−1), Taero is
the aerodynamic surface temperature (K) and rr is the aerodynamic convective resistance
to heat (s/m).

In two source models, H is often computed as the sum of canopy sensible heat Hc and
soil sensible heat Hs that are estimated as follows [20].

H = Hcanopy + Hsoil = ρaCp
Tc − Tac

rc
+ ρaCp

Ts − Tac

rs
(4)

where Tc and Ts are, respectively, the canopy and non-vegetated soil temperatures, Tac is
the air temperature in the canopy air layer. rs and ra are the soil resistance and the boundary
layer resistance associated with the canopy, respectively. Both single and two source models’
concept is illustrated in Figure 1.
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2.3. The Ground Heat Flux

The computation of soil heat flux involves analyzing the change in soil temperature
and the soil heat capacity within the profile. Generally, the transfer of heat within the soil
is minimal in planar directions and is primarily significant in the vertical direction [21].
Therefore, it is practical to focus on the vertical heat transfer. The calculation of G can be
performed using the following equation:

G =
∫ z

0
ρsCs

∂T
∂t

dz (5)

Knowing that ∂T
∂t refer to the rate of soil temperature change, ρs and Cs are the soil’s

density (kg·m−3) and specific heat (J·kg−1·K−1), respectively. The specific heat of soil is
significantly influenced by various soil properties, particularly its composition materials
and the soil water content.

2.4. The Latent Heat Flux (LE)

The energy required for the ET process is commonly referred to as the latent heat flux.
It represents the rate at which heat is lost from the surface due to evapotranspiration. LE is
typically obtained as a residual from the surface energy balance equation and is linearly
related to the ET rate. It can be calculated using the formula provided in [22].

LE = λET (6)

The value of λ, representing the latent heat of vaporization of water, is temperature-
dependent and is usually assumed to be 2.45 × 106 J/kg at a temperature of 20 ◦C [5].

3. Temperature-Based ET Models: Advantages, Drawbacks, and Evolution of Research

These models use thermal remote sensing data provided as LST to estimate H and
derive LE as a residual of the surface energy balance equation. This latter is then used to
estimate ET. Temperature-based ET models are of different complexity levels and might be
categorized as either single-source or two-source models, depending on how the contribu-
tions of soil and canopy to the overall heat flux were considered. Additionally, simplified
methods were introduced. These methods involve defining a geometric shape, typically a
triangle or trapezoid, formed using LST and a vegetation index (VI) or vegetation fraction.
By determining the evaporative fraction within this space, ET can be estimated. These
methods provide a simplified yet practical way to estimate ET without the need for com-
plex models. However, they may have limitations in capturing the full complexity of
ET processes compared to more advanced models. Figure 2 illustrates the chronological
development of the listed models.
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3.1. Single-Source Surface Energy Balance Models

Single-source surface energy balance models are based on the principle of focusing on
a predominant surface type when estimating H. In this context, the term “single source”
implies assuming relative homogeneity in surface properties, enabling simplified calcu-
lations. Despite the complexity of the actual environment with its diverse land cover
types, employing a single-source approach offers a practical and manageable method for
estimating ET. This Section provides a list of the well-known single-source surface energy
balance models and the advancements and updates made over time.

3.1.1. The Surface Energy Balance System (SEBS)

The Surface Energy Balance System (SEBS) was proposed for estimating atmospheric
turbulent fluxes and evaporative fraction using satellite and meteorological data, and
various parameterizations. It incorporates a new kB−1 parameterization that considers
canopy structure, adaptability to climate, and land cover variations [23]. In 2003, a modified
version of SEBS incorporated radiometric data from the Along Track Scanning Radiometer
(ATSR-2) to estimate atmospheric water vapor and aerosol optical depth. Sensible heat
flux estimates from the modified SEBS were validated against measurements from large
aperture scintillometers (LAS) in Spain [24]. SEBS was further evaluated using data from
the Coordinated Enhanced Observing Period (CEOP), showing reasonable agreement at
the tower scale but decreased accuracy with remotely sensed data and the Global Land
Data Assimilation System (GLDAS) [25].

In 2009, Kwast et al. 2009 evaluated SEBS for evapotranspiration estimation on a
landscape scale, observing underestimation in dry, sparsely vegetated areas [26]. Chen et al.
2013 identified biases in SEBS related to the parameterization of bare soil’s resistance to
heat transfer and proposed a revised parameter to improve performance [27].

Chen et al. 2019, calibrated key parameters in the SEBS model using thermal remote
sensing data, resulting in improved accuracy for evapotranspiration calculations [28]. In
2021, Hu et al. compared different approaches for accurate evapotranspiration estimation,
with data-driven models outperforming SEBS [29]. Net radiation was crucial for all models,
while temperature and humidity played a significant role in SEBS and a hybrid model.

Furthermore, Njuki et al. (2023) addressed the underestimation of sensible heat flux
in tall forest canopies by proposing a revised parameterization that considered the effect
of turbulence on canopy heat transfer [30]. Evaluation using flux tower sites showed a
significant reduction in underestimation, making the revised parameterization suitable for
mapping surface heat fluxes in tall forest canopies.

SEBS is often used for mapping surface turbulent heat fluxes due to its simplicity.
Nevertheless, a common issue is the uncertainty in the parameter kB−1 that accounts for
differences in heat sources and momentum sinks in representing aerodynamic resistance.
SEBS uses a constant value for the foliage heat transfer coefficient in its parameterization of
kB−1, which means that the impact of turbulence on canopy heat transfer is not considered.
Consequently, the sensible heat flux in tall forest canopies where turbulence plays a crucial
role in heat transfer is significantly underestimated. Hence, it is imperative to introduce
a refined parametrization for kB−1 to enhance the precision of sensible heat flux estima-
tions, particularly in ecosystems characterized by tall forest canopies, where an accurate
representation of turbulence-induced effects on heat exchange is crucial.

3.1.2. The Simplified Surface Energy Balance (SSEB)

The SSEB model and its variations have undergone significant development and
evaluation for estimating evapotranspiration in different regions. Initially applied in
Afghanistan, the SSEB model successfully estimated ET in irrigated areas over multiple
years, demonstrating good agreement with field reports and other models [31]. Further
evaluations in the Southern High Plains and Texas showcased the accuracy of the SSEB
approach in estimating ET, capturing a substantial portion of the measured ET variability
while requiring minimal data [32,33].
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The model was refined and assessed by leveraging the METRIC (the Mapping Evap-
otranspiration at High Resolution with Internalized Calibration) model as a reference.
A comparative analysis of the evaporative fraction estimated by both models was con-
ducted [34]. In regions characterized by relatively uncomplicated topography, the improved
SSEB model demonstrated a robust agreement with the METRIC model, as indicated by a
superior R2.

SSEB stands out as one of the most straightforward methods found in the literature
for regional-scale mapping of ET. In an overall assessment, the performance of its approach
exhibited levels of accuracy that are on par with other data-intensive techniques, such
as SEBAL, as reported by Gowda et al. (2008) [33]. Nevertheless, the reliance of SSEB
on ancillary data is minimal, and its proficiency in estimating ET in dryland regions is
notable. However, in topographically intricate mountainous areas, where the variability in
evaporative fractions is more pronounced, emerge the inherent challenges of adequately
representing the intricate interplay of radiation and heat transfer processes on steep, irreg-
ular slopes using a simplified index model. This underscores the imperative for further
extensive research endeavors in such environments.

3.1.3. The Simplified Surface Energy Balance Operational Application (SSEBop)

Building upon the SSEB model, SSEBop was developed by incorporating elevation
and latitude effects on surface temperature. It has been parameterized for operational
applications and utilized in estimating ET in the Colorado River Basin, showing promising
outcomes [35–37].

Further assessments demonstrated SSEBop reliability for large-scale ET estimation,
showcasing an R2 of 0.86 between estimated and measured ET with acceptable uncer-
tainties [38]. The model’s performance was further enhanced by combining long-term ET
estimates with SSEBop products, resulting in improved accuracy, especially in non-irrigated
areas [39]. SSEBop was also successfully applied in estimating ET for irrigated wheat in the
Cerrado region of Brazil, showing reliable results compared to the Bowen ratio method [40].

In China, SSEBop accuracy was validated, showing reliable estimations at differ-
ent scales (site and basin) compared to eddy covariance data from ChinaFLUX stations.
Moreover, the models performed well in simulating the spatiotemporal variation [41].

Utilizing Landsat thermal imagery and SSEBop in Google Earth Engine, ET was
estimated and mapped over the conterminous United States (CONUS). The model demon-
strated mixed performance in accuracy evaluation over two woody savanna sites, with a
stronger correlation over well-vegetated areas [42]. Later, SSEBop was enhanced by relying
on the Forcing and Normalizing Operation (FANO) algorithm, which improved parameter-
ization and reduced biases in grassland and cropland ET estimations. The implementation
on the two computing platforms, Google Earth Engine and Earth Resources Observation
and Science Center, further improved the model accuracy, expanding its coverage for ET
modeling [43].

The SSEBop analysis revealed more sensitivity to specific input variables, notably
LST and ET0, as well as specific parameters, including differential temperature (dT) and
maximum ET scalar (K-max) [38]. To further enhance the precision of SSEBop model
estimates, it is crucial to address inaccuracies associated with these input variables and
parameter refinement.

3.1.4. The Surface Energy Balance Algorithm for Land (SEBAL)

SEBAL, an approach based on the relationship between visible and thermal infrared
(TIR) spectral radiances, estimates hydro-meteorological parameters empirically, demon-
strating accurate surface flux ratios compared to instrumental inaccuracies. It operates
independently of land cover and can handle TIR images at various resolutions [44]. Valida-
tion studies conducted in Spain, Niger, and China confirm SEBAL’s performance in diverse
regions [44]. The method was further calibrated and validated in the Low–Middle Sao



Remote Sens. 2024, 16, 1927 8 of 26

Francisco River basin, providing improved coefficients for local conditions and accurate
daily ET estimates for mixed agricultural and natural ecosystems [45].

Sensitivity analysis reveals the importance of considering input variables, domain
size, and sensor resolution in SEBAL’s estimation of H for large heterogeneous areas [46].
Moreover, a modified SEBAL model demonstrates applicability in the humid south-eastern
United States, providing accurate estimates of consumptive water use using remote sensing
methods [47]. Understanding the impact of changes in SEBAL, such as incorporating
realistic heat transfer resistance, further refines ET estimation for different hydrological
regimes [48].

Several studies have focused on enhancing the SEBAL model for improved ET estima-
tion in various regions and conditions. A study introduced SEBAL-Advection (SEBAL-A),
incorporating a component to account for advective conditions affecting ET. SEBAL-A
demonstrated improved performance compared to the original model, particularly in arid
and semi-arid regions [49]. In South Korea, a modified SEBAL model was calibrated using
measured ET data from flux towers, showing a correlation between SEBAL and flux tower
ET values with higher accuracy in rice paddy areas [50].

To automate the calibration process, an exhaustive search algorithm was introduced,
enabling the identification of endmember pixels in SEBAL. The automated approach outper-
formed manual methods, reducing the time required for SEBAL application and allowing
for wider usage [51]. Additionally, a SEBAL and Backtracking Search Algorithm-based
model (SEBAL-BSA) addressed challenges with Landsat-8 data and hot-wet pixel selection,
demonstrating high accuracy in mapping ET [52]. Moreover, some studies focused on
specific aspects of SEBAL, such as incorporating soil moisture as an additional parameter
for anchor pixel selection, which significantly improved ET estimation accuracy [53].

Overall, these studies collectively contribute to the refinement and applicability of the
SEBAL model for accurate ET estimation in diverse regions and conditions. Modifications
to the model, such as SEBAL-A, have improved ET estimation under advective conditions,
making it particularly valuable in arid and semi-arid regions. Furthermore, SEBAL-A’s
ability to account for advection using minimal weather data enhances its utility in such
areas, even when hourly weather data are lacking. The model has also benefited from
optimization techniques like the exhaustive search algorithm (ESA), which automates
the selection of endmember pixels based on land surface temperature and vegetation
index histograms. Compared to existing automated approaches, the ESA-based method
demonstrates superior performance, offering full automation of SEBAL/METIC models
and reducing potential bias in ET estimates for inexperienced users. However, it is essential
to adapt SEBAL to changes in satellite image characteristics in current systems.

3.1.5. Mapping Evapotranspiration at High Resolution with Internalized
Calibration (METRIC)

METRIC is a model that estimates ET based on the surface energy balance. It uses
short-wave and long-wave data from satellite images, digital elevation models, and ground-
based weather data, eliminating the need for precise surface temperature measurements.
METRIC internally calibrates the surface energy balance using ground-based reference ET,
aligning with traditional ET methods and reducing computational biases. The model is
flexible, does not require knowledge of crop types or growth stages, and can detect reduced
ET due to water scarcity. METRIC’s calibration compensates for regional advection effects,
making it suitable for arid and semi-arid regions [54].

Recent research validates METRIC’s accuracy based on lysimeter measurements,
achieving 10% daily ET estimation on a sub-field scale, particularly in semi-arid regions.
Sensitivity analysis identifies influential parameters, suggesting the need to refine equations
related to these variables for enhanced accuracy [55].

The calibration of satellite-based energy-balance algorithms for ET estimation is chal-
lenging, and the CIMEC process, standing for calibration using inverse modeling at extreme
conditions, addresses this by utilizing extreme conditions for calibration. A statistics-based
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procedure simplifies the calibration process by using the relationship between vegeta-
tion amount and surface temperature. This approach improves accuracy, especially for
inexperienced operators [56].

Comparing 8-bit and 12-bit resolution imagery from Landsat-8, it is found that using
8-bit thermal data does not significantly affect ET retrievals in METRIC. Differences in
signal-to-noise ratio and scaling between images from different missions have minimal
impact on ET determination. Recalibration of Landsat-8 thermal data does not affect the
accuracy of ET retrievals in METRIC due to the model’s compensation for biases [57].

To simplify the model and reduce computational requirements, a simplified version of
METRIC called S-METRIC was proposed by [58]. S-METRIC offers a faster and simpler
approach with comparable performance to METRIC in estimating monthly ET values using
relatively limited input data.

SWH-METRIC was introduced by [59] as a combined model that facilitates the chal-
lenging task of continuous daily ET estimation at a fine spatiotemporal scale. The results
demonstrated a noteworthy alignment between the estimations by the SWH—METRIC
model and the measurements through the eddy covariance technique. Moving towards
hybrid models might have the potential to bridge existing gaps and enhance the overall
accuracy of ET estimation.

3.2. Two-Source Surface Energy Balance Models

The fundamental aspect of the two-source surface energy model revolves around
dividing the sensible heat flux between the canopy and soil layers. Hereafter are described
the most used models.

3.2.1. The Two-Source Energy Balance Model (TSEB)

A two-source model Energy Balance model, standing for TSEB, incorporating di-
rectional radiometric surface temperature was developed and validated using field mea-
surements. It showed promise in predicting soil, sensible, and latent heat flux, with an
acceptable agreement for most observations [20].

The TSEB model was tested in Italy (Sicily), and the results were compared with the
outputs of the agro-hydrological SWAP model. SWAP and TSEB showed slightly good
agreement in some fields, with further investigations planned [60]. A study compared the
accuracy of the TSEB and METRIC models in detecting crop water needs through ET. Both
models performed similarly at fine and moderate scales, with METRIC exhibiting greater
sensitivity in early growth and TSEB showing slightly greater sensitivity at maturity. Time
integration of flux estimates improved daily ET estimates [61].

The TSEB model was refined by incorporating ground measurements in irrigated
maize and cotton fields, resulting in the TSEB-A model (considering the advective condi-
tions). TSEB-A demonstrated improved agreement between observed and modeled soil
and vegetation temperatures, accurately estimating ET in arid/semi-arid climates [62].

For monitoring ET and aiding in irrigation planning, the TSEB model was compared
to the FAO-56 dual approach. Both models performed well, with TSEB demonstrating
smoother performance and potential for detecting water stress. TSEB was recommended
for mapping ET on a large scale and supporting irrigation scheduling decisions [63]. In
semiarid and arid regions, TSEB is suitable for estimating surface fluxes but tends to
underestimate sensible heat flux and overestimate latent heat flux. A study introduced
a new soil resistance formulation in TSEB, which showed improved accuracy in flux
estimation without calibration or parameter tuning [64].

To address complex tree–grass ecosystems (TGEs), the TSEB model was modified into
the TSEB-2S model, considering phenological dynamics and dominant vegetation for differ-
ent seasons. The adapted model significantly reduced errors in latent heat measurements
compared to the default TSEB model [65]. For accurate ET modeling in TGEs, the impact
of pixel heterogeneity was examined. The TSEB model performed well at <5 m resolution
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but had increased uncertainty at >10 m resolution. Incorporating landscape roughness or
using a seasonally changing TSEB model improved performance for mixed pixels [66].

Incorporating the original TSEB model with near-surface soil moisture, the TSEB-SM
model improved the agreement with observed fluxes and showed advantages over TSEB,
especially when the ratio of evapotranspiration was lower. It provided valuable insights
into the global water cycle and showed potential as an alternative to complex Global
Climate Models [67]. In another study, to estimate ET and plant transpiration (T), the
TSEB-SIF model utilized sun-induced chlorophyll fluorescence (SIF) data. It outperformed
the TSEB model in estimating ET, accurately partitioning T from ET under water deficit
conditions [68].

ET estimation using the TSEB model has demonstrated its effectiveness in yielding fa-
vorable outcomes when compared to field measurements. Nevertheless, recommendations
for enhancing the precision of the soil heat flux formulations have been proposed. Several
investigations have attested to the preference for TSEB in scenarios when data are plenty
available. Moreover, it is important to use TSEB, bearing in mind its temporal sensitivities,
which exhibit seasonally dependent variations.

3.2.2. The Atmosphere-Land EXchange Inverse (ALEXI)

ALEXI is an operational two-source model for evaluating surface energy balance using
measurements of the rate of change in radiometric surface temperature. It eliminates the
need for ancillary measurements of near-surface air temperature and accurately decom-
poses surface radiometric temperature into soil and vegetation components. It predicts
angular dependence from a single view angle and has been evaluated against field experi-
ment data with comparable uncertainties to models requiring air temperature inputs. A
strategy for applying the ALEXI model on a larger scale is briefly outlined by [69]. Among
many studies reporting on model validation, Anderson et al. compared its outputs to
ground-based observations [69].

In 2007, further improvements were made to the ALEXI model, including an algorithm
for estimating fluxes during cloudy periods [70]. This allowed for the estimation of surface
fluxes across the entire US in near real-time, highlighting the model’s practical applicability.
Moreover, in the same year, the ALEXI model was recognized for its value in monitoring
droughts, utilizing thermal infrared imagery and vegetation data [71]. The model’s evapo-
rative stress index (ESI) correlated well with the Palmer drought index, providing accurate
results and indicating its potential as a reliable drought monitoring tool. In 2011, [72] stated
that the ALEXI model’s physically-based interpretation of land-surface temperature and
vegetation data allowed for daily flux mapping at large scales.

The practical application of the ALEXI model for optimizing irrigation management in
California’s Central Valley was demonstrated in 2019 [73]. The model accurately reflected
irrigation practices, offering valuable insights into water use and crop stress, thereby
contributing to operational irrigation management.

Recently, a study focused on calibrating the SWAT model using remotely sensed
hydrologic variables and ALEXI ET, MODIS ET, and SMERGE soil moisture, in addition to
streamflow data. Results show that incorporating remotely sensed ET and soil moisture
affects sensitive model parameters but may not improve model performance. Using
only remotely sensed ET or soil moisture data leads to worse performance compared to
using streamflow alone. Different combinations of streamflow, ET, and soil moisture data
affect simulated hydrologic processes. Comparisons with the SWAT-Carbon model reveal
significant performance differences. The study suggests evaluating multiple remote sensing
options for calibration and considering different model structures for robust hydrologic
modeling [74].

Using the TSEB concept, ALEXI introduced an additional element that leverages the
accumulated thermal energy within the planetary boundary layer over time. This element
serves to refine the estimation of regional sensible heat flux and to enhance the accuracy of
ET estimation. Moreover, recent advancements in technology have ushered in sophisticated
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instruments that offer significant potential in addressing the challenging gaps that exist
within the realm of remote sensing. An important example is the use by [75] of passive
microwave sensors, capable of penetrating non-precipitating cloud cover, thereby enabling
observations. The obtained information can derive LST, which is not possible to estimate
from thermal RS in the presence of clouds. This capability remains relevant, even when
dealing with datasets characterized by relatively coarse spatial resolutions.

3.2.3. The Disaggregated Atmosphere-Land EXchange Inverse (DisALEXI)

DisALEXI model combines low- and high-resolution remote sensing data to estimate
surface energy fluxes. It uses surface brightness-temperature-change measurements from
the Geostationary Operational Environmental Satellite (GOES) to estimate average fluxes
over a 5 km scale (ALEXI algorithm). These estimates are then disaggregated using high-
resolution images of vegetation index and surface temperature, and the model was named
DisALEXI. This approach shows potential for estimating field-scale fluxes without local
observations and allows for scaling to a surface flux-tower footprint [76].

Subsequent research explored the effectiveness of the DisALEXI model in downscaling
regional-scale flux estimates to micrometeorological scales. Thermal imagery from GOES
and Landsat was used, and the accuracy of the approach was evaluated, showing good
agreement with observed fluxes at 30 m resolution. Disaggregation validated regional-scale
flux predictions over heterogeneous landscapes while thermal sharpening enhanced visual
information content and model convergence rate [69].

The DisALEXI model proved to be capable of integrating data from multiple geosta-
tionary meteorological satellite systems for global applications. Ongoing work involves
evaluating multi-scale ALEXI implementations across different continents with geosta-
tionary satellite coverage [72]. Further studies have demonstrated the application of the
ALEXI/DisALEXI model in optimizing irrigation strategies in vineyards, providing high-
resolution and daily ET estimates. The model aligns well with flux tower observations and
offers valuable information about water use variability within and around the vineyards,
aiding in water conservation efforts [77].

The evaluation of the Ecosystem Spaceborne Thermal Radiometer Experiment on the
International Space Station (ECOSTRESS) mission’s capability in monitoring ET, partic-
ularly using the PT-JPL and DisALEXI algorithms, was lacking. Comparisons between
the two products revealed the higher accuracy of DisALEXI in capturing ET patterns,
magnitude, and seasonal variability. The study also emphasized the importance of accu-
rately representing local conditions in ET models, given the heterogeneity of ET values in
small-scale agroecosystems [78].

A study performed by Knipper et al. (2023) focused on evaluating partitioned evapora-
tion (E), and transpiration (T) estimates using two formulations of DisALEXI: DisALEXI-PM
(Penman–Monteith) and DisALEXI-PT (Priestley–Taylor) [79]. Knowing that Priestley–
Taylor is a method that was introduced in 1972 to solve the data availability issue [80]. It
requires less information for the ET estimation. Priestley–Taylor is considered the most
precise among the simplified methods with reduced parameters [81].

Knipper et al. 2023 conducted the validation against partitioned fluxes derived from the
conditional eddy covariance approach in vineyards and almond orchards. The results showed
that DisALEXI-PT overestimated E and slightly underestimated T, while DisALEXI-PM agreed
better with E but overestimated T under non-advective conditions. DisALEXI-PM estimated
cooler canopy temperatures and warmer soil temperatures compared to DisALEXI-PT, resulting
in differences in E and T. The evaluation highlighted the iterative process of DisALEXI and its
potential for improving specific soil and canopy water use information for better irrigation and
water use efficiencies in water-limited systems.

3.3. Contexture-Based ET Models

The application of thermal remotely sensed data has demonstrated its significance in
examining the biophysical characteristics and predicting ecological dynamics, as empha-
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sized by [82]. The data embedded within the visible, near-infrared, and thermal infrared
spectral bands can be harnessed to extract valuable information such as LST and vegetation
indices (VIs) like the NDVI and Enhanced Vegetation Index (EVI). Figure 3 illustrates this
concept presenting both the triangle and trapezoidal methods, which will be explained in
detail in bellow. The concept of contexture-based models was initially introduced by [83].
The surface temperature over areas of different vegetation fractions has been extensively
employed in various research studies, including investigations related to soil water content,
surface resistance, land use and land cover change, drought monitoring, and regional
ET [84–87].
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The origin of the application of this approach can be attributed to the pioneering work
conducted by [83]. In this study, the researchers examined the statistical correlation between
thermal emissions and reflected spectral radiance within a heterogeneous vegetated region.
The results revealed a robust connection between thermal emissions and the quantity of
vegetation, as evidenced by a multispectral index. Conversely, no significant relationship
was observed with albedo. This observation can be rationalized by the heightened latent
heat flux associated with actively transpiring vegetation.

Upon these findings, Price in 1990 developed a method to estimate evapotranspiration
by relating variations in LST and a vegetation index [88]. This approach required indepen-
dent estimates of evapotranspiration for fully vegetated and non-vegetated areas. In the
same study, it was also identified a property that helped discriminate cirrus clouds from
areas with varying soil moisture.

Building on previous studies, ref. [89] proposed a modification of the “Simplified
Method” for estimating daily ET by combining the Penman–Monteith equation with
the energy balance equation and using linear interpolations between surface temperature
values computed for full-cover vegetation and bare soil conditions. Testing the method with
ground-based measurements and Landsat Thematic Mapper (TM) images, good agreement
with surface evaporation rate measurements was obtained. This modified method provided
a way to estimate ET in partially vegetated fields without prior knowledge of percent
vegetation cover and canopy resistance. To validate the modified method, [90] used
ground-based measurements and Landsat TM images in southeast Arizona. The approach
accurately estimated surface evaporation rates based on surface reflectance, temperature,
and spectral vegetation index. By applying this method to different environments, regional
estimates of evaporation rates for the grassland biome could be produced.

Price 1990 and Jiang et al. 1999 mainly addressed the contradictions in the conservation
equations of dual-source vegetation models and proposed schemes to estimate surface
evaporation over large areas [88,91]. These studies aimed to enhance the understanding of
land surface heat fluxes and provide reliable and easily applicable methods for operational
estimation of evapotranspiration.

Nishida et al. 2003 introduced an algorithm that estimates evaporation fraction (EF) as
a combination of EF of bare soil and EF of vegetation that itself estimated using the LST–VI
diagram [92]. Additionally, the complementary relationship of the actual and the potential
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ET was used for the formulation of EF. Using NOAA/AVHRR data, estimated EF values
were validated with actual observations of EF at AmeriFlux stations, and the algorithm
showed promising results. Moran et al. 1996 used the Integral NOAA-imagery processing
Chain (iNOAA-Chain) to quantify ET at a regional scale [90]. The approach incorporated
visible and thermal satellite information to provide instantaneous spatial distribution of ET
validated together with the employed EF, G, and instantaneous Rn against EUROFLUX site
data (March to October 1997).

To compare different sensors, Batra et al. 2006 conducted an extensive inter-comparison
of ET estimates derived from MODIS and AVHRR sensors [93]. The comparison covered as
well NDVI, Ts, EF and Rn. Despite differences in response functions and overpass times,
the contextual space of the LST–NDVI diagram yielded comparable estimates of EF.

Sobrino et al. 2007 presented a methodology based on the EF concept for retrieving ET
from low spatial resolution remote sensing data [94]. Comparison with high-resolution ET
estimation showed good agreement, capturing the seasonal evolution of daily ET based on
LST and VI.

The MSG-SEVIRI high temporal resolution of the 15-minute acquisition intervals
enables accurate estimation of the diurnal increase in LST during the morning, serving as a
reliable proxy for overall daytime H. Using that, the improvement of the triangle method
by [95] helped in estimating EF and thus the ET. By considering the diurnal change in
LST and interpreting the LST–VI space, authors provided regional estimates of ET and the
validation against field observations demonstrated low biases and good agreement.

Zhang et al. 2008 aimed to improve the prediction of land surface heat fluxes and
made two enhancements to an operational two-layer model [96]. The first improvement
employed a SEB method to determine theoretical boundary lines in the scatter plot for
surface temperature versus fractional vegetation cover (f c) in mixed pixels. The second
improvement introduced the assumption that the slope of temperature–vegetation cover
curves is mainly controlled by soil water content. Validation against in situ measurements
demonstrated the model’s accuracy in predicting latent heat flux. Furthermore, Tang et al.
2010 applied the LST–VI triangle method to estimate regional evapotranspiration in arid
and semi-arid regions [97]. An algorithm was developed to quantitatively determine the
dry and wet edges of the triangle space. Applying this algorithm to MODIS/TERRA
datasets, good agreement was achieved between retrieved H and those measured by a
Large Aperture Scintillometer (LAS).

The Two-source Trapezoid Model for Evapotranspiration (TTME) was developed by
Long and Singh in 2012 by incorporating the fc–Trad space (Trad representing radiative sur-
face temperature) and the concept of soil surface moisture availability isopleths [98]. TTME
accurately estimated LE with a mean absolute percentage difference of around 10% and
demonstrated comparable accuracy to the TSEB model. It required fewer inputs, avoided
resistance network computations, and reduced overestimation of vegetation transpiration
compared to the Priestley–Taylor equation. Sensitivity analysis revealed that TTME was
most sensitive to Trad and Ta while being less sensitive to other meteorological observations,
variables, and derived parameters.

In a different context, Yang et al., 2013 developed the Temperature and Greenness
Rectangle (TGR) model to estimate terrestrial ecosystem gross primary production (GPP)
using MODIS satellite imagery [99]. The TGR model demonstrated good agreement with
tower based GPP measurements, particularly for most vegetation types, except evergreen
broadleaf forests. This model outperforms other models, providing superior GPP estimates,
especially under dry climate conditions. It incorporates three significant advantages: (1) it
adheres closely to the principles of the light use efficiency model while ensuring that
each parameter possesses a tangible physical interpretation; (2) it mitigates the reliance on
meteorological data obtained from ground-based sources; and (3) it prevents redundancy
in information stemming from interrelated explanatory variables.

With the aim of characterizing the energy exchanges within agricultural fields, en-
compassing four distinct surface components: bare soil, healthy green vegetation, non-
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transpiring green vegetation, and mature senescent vegetation, ref. [100] presented the
SEB-4S model (standing for Four-Sources Surface Energy Balance). The SEB-4S represen-
tation is attained through a unified physical interpretation of both the edges and vertices
of two distinct polygons. The first one is created by plotting surface temperature against
fractional green vegetation, while the second is generated by plotting T as a function of
surface albedo.

Yang et al., 2015 proposed an Enhanced Two-source Evapotranspiration Model for
Land (ETEML) that utilizes the concept of a trapezoid area of the vegetation fractional
cover (VFC) and LST space, enabling spatially distributed estimation of ET [101]. ETEML
employs a pixel-wise mixed surface temperature decomposition and the crop water stress
index (CWSI) concept to separate soil evaporation and vegetation transpiration. These
enhancements overcome the limitations typically associated with a simpler trapezoid inter-
polation model, expanding its applicability. The evaluation of the model in central Iowa
(USA) demonstrated accuracy in the estimation of LE and surpassed simpler trapezoid mod-
els, reducing subjectivity and uncertainties. ETEML holds promise for evapotranspiration
modeling in diverse landscapes.

The Time-Domain Triangle Method (TDTM) was introduced in 2016 by Minacapilli
et al. for estimating regional ET [102]. The TDTM enhances the parameterization of the
Priestley-Taylor coefficient by focusing on the temporal dynamics of LST–VI pairs derived
from MODIS and MSG-SEVIRI sensors. Validated in Sicily, the TDTM accurately predicts
daily ET rates, making it a practical tool for estimating spatial and temporal changes in ET,
vital for water resource management, agriculture, ecology, and climate change research.

Existing models based on trapezoidal approaches have limitations in accurately deter-
mining the wet edge. To address this, a novel Two-source Model for estimating EF (TMEF)
was developed by [103], incorporating a two-stage trapezoidal framework and an extended
Priestly–Taylor formula. A comparison analysis was performed and the TMEF model out-
performs TTME and OTEF (One-source Trapezoid model for EF), demonstrating improved
accuracy in simulating and partitioning EF using MODIS products and field observations.

4. Intercomparison of ET Estimation among the Temperature-Based Models

Numerous studies have compared the different models that estimate ET with the
primary objective of assessing their performance, accuracy, and reliability. Evaluating
these models helps to identify the most suitable ones for specific environmental conditions
and data availability, allowing for a more precise and consistent ET estimation. Addition-
ally, intercomparisons allow for the refinement and enhancement of the existing models,
facilitating advancements and further developments.

This work focuses on the studies conducted over the past 15 years, and following a
chronological order of development, it provides an up-to-date perspective on the subject.

The two models, TSEB and SEBAL, were compared in many studies. Research con-
ducted by Timmermans et al. (2007) showed reasonable agreement of both models with
flux tower observations, whereas significant discrepancies were found in the estimation of
H, particularly related to different land cover types [104]. TSEB performed better in areas
of bare soil and sparse vegetation, while modifications to SEBAL inputs improved results
for certain land cover classes but worsened discrepancies for others. The study highlighted
the limitations of SEBAL’s simplifying assumptions and identified key inputs that affect
the models’ performance.

In 2008, Gao et al. compared four models that estimate daily ET, more precisely two
single source models (SEBAL and SEBS) and two double source models (P-TSEB and S-
TSEB), to assess their utility and constraints across diverse land covers and meteorological
conditions [105]. S-TSEB outperformed the other models; however, SEBAL and SEBS
performed well in areas with higher vegetation cover and soil moisture availability. The two
single-source models showed high sensitivity to the KB−1 parameter, resulting in significant
variations in ET estimations due to distinct approaches in handling the roughness length
for heat transfer.
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SSEB was compared to METRIC by Senay et al. in 2008, and both models produced
comparable spatial and temporal variability. However, SSEB tended to overestimate ET
over water bodies, which could be improved by incorporating a correction coefficient but
proved useful for large-scale agro-hydrologic applications, enabling the monitoring and
assessment of crop performance and regional water balance dynamics [106].

In 2009, a study evaluated three models, TSEB, METRIC, and TIM, for estimating
surface energy balance over an agricultural landscape. TSEB and METRIC performed
reasonably well, while TIM exhibited larger errors. Spatial comparisons of the models’ out-
puts revealed significant differences in modeled heat flux patterns associated with varying
vegetation densities. Adjusting certain parameters in the METRIC model reduced bias in
one variable but increased it in another. The study suggested that further comparisons
across different landscapes are needed to improve remote sensing surface energy balance
models and develop a hybrid modeling system [107].

In Yucheng, China, a study was conducted to compare three ET models using MODIS/
TERRA products and ground measurements. The models under evaluation were SEBS,
TSEB, and TVT (for Triangular Vegetation Temperature). TSEB showed the closest agree-
ment with measured heat fluxes, indicating its accuracy in estimating ET. SEBS also per-
formed reasonably well, although it was more sensitive to input errors as compared to
TSEB. However, TVT exhibited poor performance due to difficulties in selecting the dry
edge, especially in humid regions. This highlights the challenge of accurately estimating
ET in such environments using the TVT model [108].

Senay et al., 2011, compared SSEB with the METRIC model, both used for estimating
ET from satellite data. The enhanced SSEB model demonstrated good agreement with
METRIC when analyzing Landsat images from the 2003 growing season in south-central
Idaho. In areas with less complex topography, SSEB exhibited an improved correlation as
compared to METRIC. However, in more complex mountainous areas, both models faced
challenges in capturing radiation and heat transfer on steep slopes. However, the SSEB
model displayed temporal consistency [34].

In 2014, a study compared two versions of the TSEB model, TSEB-PT and TSEB-PM.
The purpose was to better account for varying vapor pressure deficits in advective, semiarid
climates. The comparison was conducted using measurements from irrigated cotton fields
in Texas. The study found that the TSEB-PM model provided improved accuracy in estimat-
ing evaporation and transpiration compared to the TSEB-PT model. The 15-minute interval
calculations showed better agreement with measurements compared to time scaling meth-
ods. The study concluded that the choice of radiometric surface temperature measurement
time did not significantly affect the results [109]. In the same year, the developed model
called SEB-4S represented the energy fluxes of different surface components in agricultural
fields. The study tested SEB-4S against two benchmark models and found that SEB-4S pro-
vided significantly more accurate and robust estimates of evapotranspiration. The model
showed potential for operational use in irrigated agricultural areas using high-resolution
remote sensing data [100].

In 2015, a study proposed ETEML based on a trapezoid framework. The study eval-
uated the model’s performance using Landsat data and found that ETEML accurately
estimated latent heat flux compared to tower observations. The model reduced subjec-
tivity and uncertainties compared to simpler trapezoid interpolation models. The study
suggested that ETEML had the potential to expand the application of trapezoid framework-
based ET modeling approaches [101].

Moreover, the four commonly used models, METRIC, SEBAL, SEBS, and SSEBop,
were compared for estimating ET in the Midwestern United States. The models were
validated for three cropland sites, and all four models reasonably captured the variation of
ET. METRIC and SSEBop performed well with low errors, while SEBAL and SEBS showed
some bias in daily ET estimation. The study emphasized the strengths and limitations of
these models for water resource management [110].
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In a valuable work conducted by [111], SEBAL, METRIC, S-SEBI, SEBS, and SSEBop
were evaluated for their accuracy in estimating ET in the humid southeastern United States.
They compared the measured ET data from four sites with the predictions from the models
using Landsat images from 2000 to 2010. The results revealed that SEBS performed the best
overall, exhibiting the lowest root mean squared error (RMSE) of 0.74 mm/day. On the other
hand, SSEBop consistently overestimated ET with an RMSE of 1.67 mm/day. The other models,
SEBAL, METRIC, and S-SEBI, fell between SSEBop and SEBS in terms of performance. However,
for short grass conditions, SEBAL, METRIC, and S-SEBI showed better accuracy than SEBS.
In conclusion, SEBS appears to be the most suitable model for humid regions, but it may
require modifications to enhance performance over short vegetation. Moving on to the study
conducted by [112], three remote models were evaluated, METRIC, LST–VI triangle, and SSEB
for estimating regional ET in an oasis-desert region during a growing season. The researchers
assessed the models’ performance by comparing them with surface flux data from five eddy
covariance flux towers at a pixel level for different land-cover types. The results showed that
METRIC and SSEB exhibited good correlations (R2 > 0.90) with the measured latent heat flux,
while the LST–VI triangle model tended to overestimate available energy. Specifically, the
LST–VI triangle model had the highest consistency with METRIC in farmland with an R2 of
0.98 and an RMSE of 13.69 W m−2. Overall, METRIC outperformed the other models, while
the LST–VI triangle model tended to overestimate and SSEB underestimated higher LE values.
Sensitivity analysis revealed that the SSEB and LST-VI triangle models were more sensitive to
estimated surface temperature and available energy compared to METRIC.

Similarly to the study mentioned here above, ref. [113] evaluated the performance of
SEBAL, METRIC, SEBS, S-SEBI, and SSEBop in estimating ET in a high biomass sorghum
field. The researchers compared the models against measurements from an eddy covariance
system. The findings indicated that S-SEBI, SEBAL, and SEBS performed reasonably well
overall, while METRIC and SSEBop had a poorer performance. All SEB models tended
to overestimate ET during extremely dry conditions and underestimated sensible heat
flux. METRIC, SEBAL, and SEBS consistently overestimated ET regardless of wet or dry
periods, while S-SEBI and SSEBop significantly underestimated ET under wet conditions.
The study highlighted the importance of incorporating soil moisture or plant water stress
components into SEB models to improve their performance, particularly in extremely dry
or wet environments.

Lu et al. conducted a study in 2017 aiming to estimate ET in an arid region for effective
water resource management [114]. They compared METRIC and TTME for estimating
LE in a specific sub-region of the Heihe River Basin in northwest China. The models
were applied to Landsat-8 and Landsat-7 data during the crop growth stage from April
to September 2013. The researchers evaluated the derived LE values from METRIC and
TTME by comparing them with observed LE data. The results indicated that the spatial
distributions of LE from both models were similar, with relative deviation values within
7%. This suggests that both METRIC and TTME models are suitable for retrieving LE in
the study area. However, the precision of LE retrieval was influenced by land use/cover
types. METRIC provided slightly higher accuracy than TTME in desert areas, while TTME
achieved notably higher precision than METRIC in farmland/wetland areas.

In a data-limited region in the Kilombero Valley river basin, three SEB models, SEBAL,
SSEBop, and S-SEBI, were compared. SEBAL and SSEBop showed high and low ET,
respectively, while S-SEBI had similar ET to the ensemble mean of all models. The models
provided statistically comparable ET estimates among different land cover classes and
spatial scales [115]. In the same year, a study addressed the uncertainty and weight
determination issues in ET estimation by adopting the Bayesian model averaging (BMA)
method. Four SEB models, SEBAL, SSEB, S-SEBI, and SEBS, were combined using Landsat-8
images. BMA methods provided more accurate and reliable results compared to individual
models [116]. Similarly, BMA was used by Yang et al. in 2021 to improve daily ET
estimation. Eight models, including SEBS, SEBAL, and machine learning algorithms,
were combined, resulting in a more reliable estimate of ET [117]. The BMA method,
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incorporating machine learning, significantly enhanced daily ET accuracy and reduced
uncertainties among models.

In more recent work, the performance of the new mission ECOSTRESS thermal ra-
diometer experiment was assessed. The PT-JPL algorithm captured the diurnal ET pattern
but tended to overestimate instantaneous ET in the morning; on the other hand, the
DisALEXI algorithm demonstrated higher accuracy [78].

In 2022, Kamyab et al. compared two algorithms, SEBAL and METRIC/Earth Engine
Evapotranspiration Flux (EEFLux), using Landsat-8 images during the maize growth period.
The results showed that ET values varied throughout the season due to temperature changes
and variations in maize cover. The EEFLux algorithm outperformed SEBAL in terms of
accuracy, providing closer estimations to measured ET values with higher correlation and
lower standard deviation [118].

One of the latest studies compared the SEBS and SEBAL algorithms for estimating
daily wheat evapotranspiration in central Khuzestan province. Both algorithms showed
high compatibility with lysimeter data, outperforming other methods and suggesting
their suitability for accurate evapotranspiration estimation in the region [119]. In another
study [120], under the arid and semi-arid environment of the Northern part of Saudi Arabia,
the SEBAL and METRIC models were compared for estimating ET.SEBAL was deemed
superior in estimating ET compared to METRIC.

In conclusion, the comparison of various ET estimation models reveals distinct assets
and limitations inherent to each. TSEB demonstrates superior performance in environments
with bare soil and sparse vegetation, particularly in advective, semi-arid climates, whereas
SEBAL emerges as a reliable choice for humid regions and arid/semi-arid environments.
SEBS exhibits versatility across different contexts but may require adjustments for optimal
performance over short vegetation. METRIC stands out in arid regions, especially in desert
areas, while SSEB showcases reliability in areas with less complex topography but may
overestimate ET in extremely dry conditions. S-SEBI offers consistent estimates across
different land cover classes and spatial scales, showcasing potential when integrated into
Bayesian model averaging methods.

However, it is important to note that no single model is superior, underlining the ne-
cessity of considering specific environmental characteristics when selecting an appropriate
ET estimation model. The choice must account for factors such as land cover types, climate
conditions, data availability, and inherent model limitations.

The advantages and drawbacks of the RS models are summarized in Table 1 below:

Table 1. Advantages and disadvantages of the above detailed ET models.

Type Models Advantages Disadvantages

One-Source SEB models SEBS For all one-source SEB, there is a low requirement for
meteorological data, as indicated by [9].
The uncertainty associated with SEBS stemming from
temperature and meteorological parameters can be
partially addressed by explicitly calculating the roughness
height for heat transfer instead of relying on fixed
values [16]
SSEB, the Simple Cost-effective Operational model, offers
rapid estimates of evapotranspiration across large regions.
SEBAL, on the other hand, demands minimal
ground-based measurements, possesses an automated
internal calibration system, and does not necessitate
precise atmospheric corrections, according to [16].
METRIC is similar to SEBAL but provides the possibility
to consider surface slope and aspect, as outlined by [16].
SSEBop, a straightforward, cost-effective, and operational
model, requires minimal computational resources and
automatically selects reference pixels [121].

For all single-source SEB models, exclusive to clear-sky
conditions, necessitates the parameterization of excessive
resistance and local calibration; vulnerable to errors in
surface temperature (Ts) and air temperature (Ta);
mandates the conversion of instantaneous values to daily
values [9].
SEBS Requires an excessive number of parameters and
involves a relatively intricate computation of turbulent
heat fluxes [16].
SSEB underestimates ET in areas with low albedo and
overestimates ET in areas with high G and high albedo;
moreover, it demonstrates high sensitivity to land surface
temperature (LST).
SEBAL is applicable primarily to flat terrains and exhibits
uncertainties in identifying reference pixels [16].
METRIC displays uncertainties in identifying reference
pixels [16].
SSEBop fails to address variations in H and G and neglects
surface and slope aspects in heterogeneous landscapes.

SSEB

SSEBop

SEBAL
METRIC
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Table 1. Cont.

Type Models Advantages Disadvantages

Two-Source SEB models TSEB The two-source SEB models require low meteorological
data, as mentioned by [9].
TSEB can be applied effectively under circumstances
characterized by high VPD and limited
meteorological data.
ALEXI is capable of producing extensive-scale maps for
daily energy fluxes and soil moisture levels.

For all two-source SEB, only available for clear-sky; high
sensitivity to surface temperature errors; requires scaling
of instantaneous to daily values [9].
ALEXI requires the utilization of land surface temperature
data characterized by a high temporal resolution.

ALEXI
DisALEXI

Contexture-based
ET models

TTME In all models, there is minimal susceptibility to Ts errors,
along with minimal metrological data demands [9].
TTME, exhibits a straightforward design with minimal
input data prerequisites, eliminating the necessity for
calculating the resistance network.
ETEML is appropriate for complex and diverse conditions,
obviating the need for resistance network calculations.

In all models, the estimation is applicable solely under
clear-sky conditions. The connections established from
Ts-VI space are overly simplistic and necessitate the
conversion of momentary values to daily ones [9].
TTME exhibits inaccuracies in energy flux estimation
because of its sensitivity to temperature-dependent cold
boundaries. Various choices of wet and dry boundaries
are available, and they require a level surface with a
substantial pixel count.
ETEML encounters the challenge of dealing with an
excessive number of inputs.

TGR
SEB-4S
ETEML
TDTM
TMEF

5. Earth Observation Emerging Missions and Advancements

The advancement in spatial and spectral resolutions in new missions can significantly
impact the accuracy of Evapotranspiration (ET) estimation models, providing enhanced
insights into the water cycle dynamics and agricultural productivity.

The Copernicus Space Component (CSC) is expected to undergo evolution in the
mid-2020s. This evolution aims to fulfill key user demands that are currently not met by the
present infrastructure. Additionally, it aims to enhance services by improving monitoring
capabilities in the thematic areas of agriculture/forestry, CO2, and polar regions. This
progression will be synergistic with the improved continuity of services for the upcoming
generation of CSC.

Specifically, the Copernicus program will enhance its existing capabilities via the
addition of six new satellite missions. One of the missions will involve the Copernicus
Land Surface Temperature Monitoring (LSTM), which will deploy a thermal infrared
sensor with a high spatial-temporal resolution to gather data on land-surface temperature.
The mission addresses the urgent needs of the agricultural user community to enhance
sustainable agricultural production at the field level, considering the growing challenges
of water shortage and unpredictability. Land-surface temperature measurements and
the resulting evapotranspiration are crucial factors for comprehending and adapting to
climate fluctuations, overseeing water resources for agricultural purposes, forecasting
droughts, and addressing concerns related to land degradation, natural disasters like fires
and volcanoes, coastal and inland water management, and urban heat island problems.
In more detail, by monitoring high-resolution thermal signatures, it is possible to assess
the status of crop water and overall water stress. This helps in managing irrigation and
optimizing the use of limited water resources for crop production. Additionally, it allows
for the derivation of essential soil parameters that cannot be obtained in the VNIR/SWIR
spectral range. This promotes the use of resilient agricultural techniques, which aim to
preserve ecosystems and gradually enhance the quality of land, soil, and water. As a
result, it contributes to the development of more sustainable agricultural practices. High-
resolution thermal imaging with precise spatio-temporal data can be used to immediately
identify water conservation practices or determine if they are necessary. Unauthorized
water abstractions can be identified and tracked by comparing evapotranspiration maps
with water rights.

Moreover, the Landsat mission will add to its constellation the Landsat Next. At
present, 30-m resolution imagery of the Earth is provided by the Landsat-7 and 8 missions,
with a 16-day return period per satellite. Landsat-7 was launched in April 1999 and is
now in a deteriorating orbit. It also displays a scan line artifact that decreases its coverage.
Landsat 8 was introduced in February 2013. Compared to Landsat-7, it has smaller spectral
bands, better calibration and signal-to-noise ratios, increased 12-bit radiometric resolution,
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and more accurate geolocation. The Landsat-9 satellite was launched in September 2021
and closely resembles Landsat-8. These Landsat missions ensure a consistent supply of mul-
tispectral images [122]. To this constellation Landsat Next will be added in late 2030. The
next Landsat mission will not only guarantee the uninterrupted continuation of the longest
space-based documentation of Earth’s land surface, but it will also significantly enhance
the range and quality of practical information that will be freely accessible to end users.
Landsat Next will enhance the existing Landsat program by offering higher resolution in
temporal, spatial, and spectral resolution. This will enable better observation, management,
and adaptation to Earth’s changes. Additionally, it will provide enhanced capabilities to
facilitate the development of new applications in land, water, and climate research.

Landsat Next signifies a significant advancement in the ability to measure and gather
data. The improved temporal and spatial resolution of the upcoming 26-band super
spectral Landsat Next constellation will strengthen current Landsat applications and enable
new applications that aid in evaluating water quality and aquatic health, optimizing crop
production and soil conservation, managing and monitoring forests, and mapping minerals
using thermal emissivity. In addition, Landsat Next will acquire phenological signatures
to classify vegetation and model crop development, health, and yields. It will also detect
periodic disturbances caused by harvesting, as well as episodic insect and disease agents.
Furthermore, it will assess near-continuous water use and evapotranspiration. Additionally,
it will offer early warnings regarding the initiation of fires and harmful algal blooms.
Moreover, it will monitor public health during heat wave seasons and track the dynamics
of snow and ice on both land and sea.

Additionally, more of the future Copernicus missions may contribute added value
to the estimation of evapotranspiration via crop monitoring and soil moisture. One of
these missions is CHIME (Copernicus Hyperspectral Imaging Mission), which starts in
2028 and is expected to complement Copernicus Sentinel-2 for applications such as land-
cover mapping, providing routine hyperspectral observations to increase the capabilities,
accuracy, and spatial resolution of current products. The CHIME mission will consist of
two satellites (CHIME-A and CHIME-B) providing systematic hyperspectral images to map
changes in land cover and aid sustainable agricultural practices; it will be launched in 2028.
The satellite will operate with Visible (VIS), Near Infrared (NIR), and Short-Wave Infrared
(SWIR) spectrum at a spectral bandwidth of less than 10 nm, with a spatial resolution
of 30 m with a revisit time of 10–12.5 days. Compared to multi-spectral missions, both
satellites will have more (narrow) spectral bands in the visible-to-shortwave infrared range,
allowing for more accurate determination of biochemical and biophysical variables. In
addition, the availability of a continuous spectrum makes algorithms more effective in a
variety of agricultural applications to support sustainable management [123]. The spatial
resolution obtained from these satellites will also be beneficial to capture the fine spatial
features typical of inland and coastal waters and, thus, to improve the land use and cover
(LU/LC) maps for flood risk assessments.

Furthermore, slated for launch in 2028, the Radar Observing System for Europe in
L-band (ROSE-L) represents an Earth-observing synthetic aperture radar (SAR) mission
under development by the European Space Agency (ESA). The main goal of ROSE-L is to
streamline geohazard monitoring, monitor alterations in land use, agriculture, and forestry,
and provide detailed soil moisture data.

The mission’s objective is to utilize the ROSE-L SAR instrument, which operates in
the L-band, to function as a high-resolution, versatile, and all-weather imager. This will
enhance the capabilities of the current Copernicus C-band SAR systems. The L-band
radio, with its longer wavelength, has the distinct ability to penetrate dense vegetation,
greatly improving imaging capabilities in these situations. The primary objective of the
L-band SAR mission is to systematically observe and assess soil moisture levels beneath
the vegetation canopy across different types of vegetated land cover during the whole
period of plant growth. The L-band SAR has a longer wavelength, which allows it to
penetrate the soil more deeply compared to higher-frequency bands, such as C-band. This
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enables a closer and more detailed observation of the root zone. Ref. [124] emphasized
the importance of L-band SAR, showing that it is more sensitive to soil moisture for areas
with no vegetation and moderate plant cover densities compared to C-band radar signals.
The ability of ROSE-L to infiltrate plant cover and directly assess soil moisture beneath the
canopy possesses significant promise for augmenting our comprehension of soil moisture
dynamics across diverse land cover categories. This feature is especially beneficial for
agricultural management since it allows for accurate monitoring of soil moisture, which is
essential for optimizing irrigation techniques and guaranteeing optimal water utilization
in different agricultural activities.

To summarize, the upcoming ROSE-L mission, equipped with its advanced L-band
SAR technology, offers a substantial enhancement to our ability to observe soil moisture
beneath vegetation, thereby contributing to the improvement of agricultural practices, more
effective land management, and enhanced monitoring of geohazards in various landscapes.

6. Summary and Conclusions

This paper presents a comprehensive overview of temperature-based models used
for estimating evapotranspiration (ET). The discussion begins by introducing the surface
energy balance concept and key variables, including sensible heat flux, ground heat flux,
and latent heat flux. Subsequently, various temperature-based ET models are explored,
emphasizing their strengths, weaknesses, and historical evolution. Over a retrospective
analysis spanning 15 years, modifications proposed by researchers, validation studies, and
intercomparisons among these models are synthesized. Additionally, the article investi-
gates the impact of advancements in satellite missions on improving ET estimation models,
highlighting the significance of emerging earth observation missions. The review of the
existing work in the field of remote sensing related to ET estimation is a cornerstone for
progress. The comprehensive examination of RS models allows for their deep understand-
ing, for identifying their strengths and limitations, and for developing more robust and
reliable ET estimation models.

The performance of these models varies across different regions and environmental
conditions. As such, classification and cross-comparison of these models are of substantial
importance. This approach enables practitioners to select the most appropriate model
for a specific set of conditions, enhancing the accuracy of ET estimates. It is important to
acknowledge that no single ET estimation model is universally perfect. Different models
excel under different scenarios and environmental conditions. Expanding on prior research
efforts, this work provides support for the selection of models based on the specific require-
ments of a study area or application. The intercomparison between the ET models did not
involve identical models, as the studies in question primarily employed different models.
Nevertheless, it is essential to recognize that these studies were distinct in their objectives
and methods. Despite this diversity, the overall crosscutting comparison can yield valuable
insights and serve as a robust foundation for future investigations.

One of the most promising aspects of the development of ET estimation models is using
the most recent technologies and employing hybrid approaches. Emerging technologies,
such as machine learning and advanced remote sensing techniques, can enhance the
precision and accuracy of ET estimates. Hybrid models that combine the strengths of
multiple approaches can harness the advantages of each method, leading to more robust
and adaptable ET estimation tools.

The emerging missions and advancements in the field of remote sensing will radically
enhance the accuracy of the developed ET estimation models. More specifically, the new
missions are equipped with technologically advanced optical and radar sensors with
improved spatial and temporal resolutions and hold promising prospects for upgrading
the precision and reliability of ET estimations.
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