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1. Introduction 

This document is the “ATBD and products specifications” and corresponds to the 
second release of the deliverable D7 according to ESA Contract No. 
4000139810/22/I-DT and the Project Proposal P22S1956-02-v0. 

1.1. Applicable documents 
• Statement of Work and its applicable and reference documents 

• “EO Africa Water Management” proposal “P22S1956-02-v0” 

• “EO Africa Water Management” Negotiation Points P22S1956-03-v0.1 

• “EO Africa Water Management” Minutes of the Preparatory Meeting P22S1956-06-
v0 

• Contract with ESA  4000139810/22/I-DT 

• P22S1956-15-v1.1_D15_EO_AFRICA_EXPLORERS_PMP: Project Management 
Plan 

1.2. Reference documents 

• [RD01] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong 
Ma, Qiwei Ye, Tie-Yan Liu. "LightGBM: A Highly Efficient Gradient Boosting 
Decision Tree". Advances in Neural Information Processing Systems 30 (NIPS 
2017), pp. 3149-3157. 

• [RD02] Buitinck, Lars, et al. "API design for machine learning software: 
experiences from the scikit-learn project." arXiv preprint arXiv:1309.0238 (2013). 

• [RD03] Taylor, C. Robert (1993). "Dynamic Programming and the Curses of 
Dimensionality". Applications Of Dynamic Programming To Agricultural Decision 
Problems. Westview Press. pp. 1–10. ISBN 0-8133-8641-1. 

• [RD04] Hughes, G.F. (January 1968). "On the mean accuracy of statistical pattern 
recognizers". IEEE Transactions on Information Theory. 14 (1): 55–
63. doi:10.1109/TIT.1968.1054102. S2CID 206729491 

• [RD05] Trunk, G. V. (July 1979). "A Problem of Dimensionality: A Simple 
Example". IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-
1 (3): 306–
307. doi:10.1109/TPAMI.1979.4766926. PMID 21868861. S2CID 13086902 

• [RD06] B. Chandrasekaran; A. K. Jain (1974). "Quantization Complexity and 
Independent Measurements". IEEE Transactions on Computers. 23 (8): 102–
106. doi:10.1109/T-C.1974.223789. S2CID 35360973 

• [RD07] Allen, R.G. "A Penman for all seasons," J. Irrig. Drain. Eng., vol. 112, no. 4, 
pp. 348–368, 1986. 

• [RD08] Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. Crop evapotranspiration—
Guidelines for computing crop water requirements, FAO Irrigation and Drainage 
Paper 56, FAO, Rome, 1998, pp. 300(9), D05109. 

• [RD09] Allen, R.G., Tasumi, M., Morse, A., Trezza, R., Wright, J.L., Bastiaanssen, 
W., Kramber, W., Lorite, I., & Robison, C.W. "Satellite-based energy balance for 
mapping evapotranspiration with internalized calibration (METRIC)—Applications," 
J. Irrig. Drain. Eng., vol. 133, pp. 395–406, 2007. 

https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://books.google.com/books?id=71SsDwAAQBAJ&pg=PA1
https://books.google.com/books?id=71SsDwAAQBAJ&pg=PA1
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-8133-8641-1
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FTIT.1968.1054102
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:206729491
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FTPAMI.1979.4766926
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/21868861
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:13086902
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FT-C.1974.223789
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:35360973
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• [RD10] Baldocchi, D.D. "Assessing the eddy covariance technique for evaluating 
carbon dioxide exchange rates of ecosystems: Past, present, and future," Glob. 
Chang. Biol., vol. 9, no. 4, pp. 479–492, 2003. 

• [RD11] Bastiaanssen, W.G.M., Noordman, E.J.M., Pelgrum, H., Davids, G., 
Thoreson, B.P., & Allen, R.G. "SEBAL model with remotely sensed data to improve 
water-resources management under actual field conditions," J. Irrig. Drain. Eng., 
vol. 131, pp. 85–93, 2005. 

• [RD12] Calera, A., Campos, I., Osann, A., D’Urso, G., & Menenti, M. "Remote 
Sensing for Crop Water Management: From ET Modelling to Services for the End 
Users," Sensors, vol. 17, no. 5, 2017. DOI: 10.3390/s17051104. 

• [RD13] Chen, J.M., & Liu, J. "Evolution of evapotranspiration models using thermal 
and shortwave remote sensing data," Remote Sensing of Environment, vol. 237, 
pp. 111594, 2020. 

• [RD14] Doorenbos, J., & Kassam, A.H. Yield response to water, Irrigation and 
Drainage Paper, vol. 33, pp. 257, 1979. 

• [RD15] Doorenbos, J., & Pruitt, W.O. Guidelines for predicting crop water 
requirements, FAO Irrigation and Drainage Paper No. 24, 1977. 

• [RD16] El-Shirbeny, M.A., Ali, A.M., Savin, I., Poddubskiy, A., & Dokukin, P. 
"Agricultural water monitoring for water management under pivot irrigation system 
using spatial techniques," Earth Systems and Environment, vol. 5, no. 2, pp. 341–
351, 2021. 

• [RD17] Ershadi, A., McCabe, M.F., Evans, J.P., Chaney, N.W., & Wood, E.F. 
"Multi-site evaluation of terrestrial evaporation models using FLUXNET data," 
Agric. For. Meteorol., vol. 187, pp. 46–61, 2014. 

• [RD18] Fuglie, K., Dhehibi, B., El Shahat, A.A.I., & Aw-Hassan, A. "Water, policy, 
and productivity in Egyptian agriculture," American Journal of Agricultural 
Economics, vol. 103, no. 4, pp. 1378–1397, 2021. 

• [RD19] Gebremedhin, M.A., Lubczynski, M.W., Maathuis, B.H., & Teka, D. 
"Deriving potential evapotranspiration from satellite-based reference 
evapotranspiration, Upper Tekeze Basin, Northern Ethiopia," Journal of Hydrology: 
Regional Studies, vol. 41, pp. 101059, 2022. 

• [RD20] Guo, D., Westra, S., & Maier, H.R. "An R package for modelling actual, 
potential and reference evapotranspiration," Environmental Modelling & Software, 
vol. 78, pp. 216–224, 2016. 

• [RD21] Hargreaves, G.L., Hargreaves, G.H., & Riley, J.P. "Agricultural benefits for 
Senegal River basin," J. Irrig. Drain. Eng., vol. 111, no. 2, pp. 113–124, 1985. 

• [RD22] Hargreaves, G.H., & Samani, Z.A. "Reference crop evapotranspiration from 
temperature," Appl. Eng. Agric., vol. 1, no. 2, pp. 96–99, 1985. 

• [RD23] Irmak, S., & Irmak, A. "Reference and crop evapotranspiration in South 
Central Nebraska. II: Measurement and estimation of actual evapotranspiration for 
corn," J. Irrig. Drain. Eng., vol. 134, no. 6, pp. 700–715, 2008. 
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147–159, 2008. 

• [RD25] Jackson, R.D., Idso, S.B., Reginato, R.J., & Pinter Jr, P.J. "Canopy 
temperature as a crop water stress indicator," Water Resources Research, vol. 17, 
no. 4, pp. 1133–1138, 1981. 

• [RD26] Jensen, M.E., & Haise, H.R. "Estimating evapotranspiration from solar 
radiation," J. Irrig. Drain. Div., vol. 89, no. 4, pp. 15–41, 1963. 
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• [RD29] Beyer, K.; Goldstein, J.; Ramakrishnan, R.; Shaft, U. (1999). "When is 
"Nearest Neighbor" Meaningful?". Database Theory — ICDT'99. LNCS. Vol. 1540. 
pp. 217–235. doi:10.1007/3-540-49257-7_15. ISBN 978-3-540-65452-
0. S2CID 206634099. 

• [RD30] Majozi, N.P., Mannaerts, C.M., Ramoelo, A., Mathieu, R., & Verhoef, W. 
"Uncertainty and sensitivity analysis of a remote-sensing-based Penman–Monteith 
model to meteorological and land surface input variables," Remote Sensing, vol. 
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• [RD31] Makkink, G.F. "Examination of Penman’s revised formula," Netherlands J. 
Agric. Sci., vol. 5, no. 4, pp. 290–305, 1957. 
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Wood, E.F. "The GEWEX LandFlux project: Evaluation of model evaporation using 
tower-based and globally-gridded forcing data," Geosci. Model Dev. Discuss., vol. 
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• [RD34] Michel, D., Jiménez, C., Miralles, D.G., Jung, M., Hirschi, M., Ershadi, A., 
Martens, B., McCabe, M., Fisher, J.B., & Mu, Q. "The WACMOS-ET project – Part 
1: Tower-scale evaluation of four remote-sensing-based evapotranspiration 
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1.3. Acronyms 
Acronym 
AARSE  African Association of Remote Sensing of the Environment 
AI Artificial Intelligence 
ATDB Algorithm Theoretical Baseline Documents  
AWS Amazon Web Services 
cal/val Calibration and Validation 

CIHEAM-IAMB 
International Center for Advanced Mediterranean Agronomic Studies - 
Mediterranean Agronomic Institue of Bari  

CHIME Copernicus Hyperspectral Imaging Mission 
CSW Catalogue Service for the Web 
CWSI Crop Water Stress Index 
DAME Data Intensive Technologies for Multi-mission Environments 
DIAS  Data and Information Access Services 
DSS Decision Support System 
EA Early adopter  
EARSC  European Association of Remote Sensing Companies  

ECOSTRESS 
ECOsystem Spaceborne Thermal Radiometer Experiment on Space 
Station 

EO Earth Observing or Earth Observation 

EO AFRICA 
African Framework for Research Innovation, Communities and 
Applications in Earth Observation 

EODC Earth Observations Data Cube  
ESI Evaporative stress index  

https://earsc.org/
https://gdal.org/en/latest/
https://git.earthdata.nasa.gov/projects/LPDUR/repos/ecostress_swath2grid/browse
https://git.earthdata.nasa.gov/projects/LPDUR/repos/ecostress_swath2grid/browse
https://pypi.org/project/pyresample/
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SME  Small and Medium-sized Enterprise 
SoW  Statement of Work 
SRL Societal Readiness Level 
TDR Time Domain Reflectometry 
TIR Thermal Infrared Radiation 
TRL Technology Readiness Level 
UAV Unmanned Aerial Vehicle 
USGS United States Geological Survey 
VI Vegetation Index  
VIS/NIR visible/near-infrared  
VM Virtual Machine 
VNIR/SWIR  Visible and Near-Infrared / Short-wave infrared 
Wb Water productivity 
WCS Web Coverage Service 
WFS Web Feature Service 
WMS  Web Map Service 
WP Work Package 
WUE Water Use Efficiency  
Ya Actual harvested yield 
Ym Potential harvested yield  
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2. Background 

In regions with arid climates and sparse vegetation, such as Egypt, inefficient water 
consumption poses a significant challenge to agricultural sustainability. Agriculture, 
being one of the most water-intensive sectors, suffers greatly from this issue, leading 
to considerable water loss. 

The aim is to address this challenge by leveraging thermal Earth Observation data to 
accurately estimate crop water consumption, specifically through actual 
evapotranspiration (ETa). This data-driven approach offers valuable insights into the 
true water requirements of crops, enabling the optimization of irrigation practices for 
more effective and sustainable water resource utilization. 

Accurate ETa estimation is crucial for effective water management in irrigation 
systems, water resource planning, allocation, and enhancing water use efficiency. By 
providing insights into crops' consumptive water use, decision-makers can better 
allocate available water resources to different land uses. This, in turn, can lead to 
improvements in irrigation scheduling, water allocation, and overall efficiency, thereby 
enhancing agricultural productivity while conserving precious water resources. 

Ιn-situ measurements of these variables are considered accurate but are complex, 
expensive, and labor-intensive and therefore cannot be afforded over large areas and 
in many developing contexts of the world. Conversely, the current unprecedented 
availability of free and open EO satellite data has been recognized as the most 
feasible mean to provide, in near-real-time, temporally and spatially continuous 
information for monitoring large cropped areas necessary to adopt both evidence-
based governance instruments (e.g. water pricing policies) and managerial actions. 

2.1. Scope and Limitations 

The integration of space data into agricultural practices represents a transformative 
tool for supporting farmers and planners in optimizing irrigation water management. 
By providing small farmers with access to satellite data, the primary goal is to enhance 
sustainability and increase farmers' income through informed decision-making 
processes. This encompasses leveraging satellite data to anticipate and mitigate crop 
stress caused by water losses, particularly through evapotranspiration. Furthermore, 
the adoption of satellite data facilitates precision irrigation planning and scheduling, 
promoting optimized water use efficiency across agricultural landscapes. 

In addition to aiding individual farmers, the utilization of satellite-derived information 
informs the development of more effective policies concerning regional water 
management, allocation, and distribution. This approach aims to ensure equitable and 
efficient utilization of water resources, contributing to broader agricultural 
sustainability initiatives. 

However, it's important to recognize the inherent limitations in this approach. Many 
farmers may lack awareness of the full capabilities offered by satellite technology, 
leading to challenges in effectively harnessing its potential benefits. Additionally, 
farmers may encounter difficulties in identifying the most suitable solutions for their 
specific needs, necessitating targeted training initiatives to bridge this knowledge gap. 
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Moreover, while satellite data offers invaluable insights, it's essential to acknowledge 
its limitations in providing real-time, on-the-ground information. Weather conditions, 
cloud cover, and spatial resolution can affect data accuracy and timeliness, requiring 
complementary ground-based monitoring and verification methods. 

Despite these challenges, the integration of satellite data into agricultural practices 
holds immense promise for improving irrigation water management. Recognizing and 
addressing these limitations through education, training, and ongoing refinement of 
data analysis methods will be crucial for maximizing the benefits of satellite 
technology in agriculture. 

2.2. Purpose of the Algorithm  

The agricultural sector is already the largest user of water resources, accounting for 
roughly 70% of all freshwater withdrawals globally and requires even more water to 
sustain the continuous demand growth of food and biomass fostered by the population 
growth and changes in rainfall and temperature patterns caused by climate change. 
This is leading to an increase in competition and conflicts among users and sectors, 
especially in water-limited areas, for the use of the resources. The main purposes of 
this algorithm elaboration are : 

• Acquire detailed knowledge of the spatial-temporal variation of soil and plant 
conditions. 

• Provide the index NDVI acquired from Hyperspectral data, a really important 
factor with values [-1,1]. Negative values indicate water presence. On the 
other hand, with NDVI values close to +1, there’s a high possibility that it’s 
dense green leaves. NDVI close to zero indicates an absence of green leaves. 

Figure 2-1: Challenges that have to be addressed due to the pressing issue of water demand. 
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• Provide temporal and spatial scales that match rapidly evolving capabilities to 
vary cultural procedures, irrigation and agrochemical inputs1. 

• Provide Evapotranspiration using Earth Observation (EO) data, eliminating the 
need for scientists or farmers to conduct on-site measurements. This ensures 
that evapotranspiration data is provided in a timely manner for the relevant 
period. The algorithm providing ETa represents the reference data used by 
farmers for scheduling irrigation, providing crucial insights into actual 
evapotranspiration of the current cultivated crops and allowing to schedule 
future cultivations based on past results. 

• Acquire the Stress Coefficient Ks which in desert area reflects the regions with 
water deficit. Ks considers factors like soil salinity and poor land fertility, 
particularly relevant in areas where water availability is a limiting factor. It 
adjusts ET estimates based on the magnitude of water deficit, providing 
insights into crop stress levels. 

2.3. Audience/Users 

The developed tool endeavors to function as a powerful asset, empowering 
stakeholders involved in the complex realm of water management. From individual 
farmers to policymakers working at regional or national levels, a wide spectrum of 
stakeholders stands poised to gain valuable insights from the capabilities offered by 
remote sensing tools. 

Small farmers 

For farmers, the algorithm serves as a powerful tool for precision agriculture, offering 
insights into the condition of their crops, the soil and the selection of cultivated goods 
each season. By accurately assessing crop health, farmers can make informed 
decisions on irrigation schedules, fertilizer application, and pest management, 
ultimately optimizing resource utilization and enhancing crop yield. The algorithm's 
results such as Ks factor and Evapotranspiration are an indication of early signs of 
stress or knowing the state of actively growing plants based on Eta’s results and may 
allow farmers to take proactive measures, preventing potential losses and choose 
regions with more appropriate water conditions. Farmers could leverage the algorithm 
by selecting certain indexes that could indicate crop health and decide what should 
be cultivated and during which time period. By harnessing remote sensing tools like 
satellite imagery and ground-based sensors, these farmers gain access to near real-
time data on critical parameters such as crop evapotranspiration, crop development, 
and crop water stress indicators like NDVI and CWSI, respectively. Drawing upon this 
data empowers them to make well-informed decisions concerning the timing and 
quantity of irrigation, thus amplifying both agricultural productivity and water 
efficiency. 

Agricultural organizations 

Agricultural organizations can leverage the algorithm to provide targeted support and 
advisory services to farmers, improving overall agricultural productivity in desert 
regions. The adoption of such technology not only benefits individual farmers but also 
contributes to the broader goal of ensuring food security and promoting the 

 
 
1 A. Calera, I. Campos, A. Osann, G. D’Urso, and M. Menenti, “Remote Sensing for Crop Water 
Management: From ET Modelling to Services for the End Users,” Sensors, vol. 17, no. 5, Art. no. 5, May 
2017, doi: 10.3390/s17051104. 
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sustainable use of resources in challenging agricultural landscapes. Organizations 
could exploit the information derived from NDVI for specific cultivations in certain time 
periods and advise farmers what to cultivate based on past data derived from EO data 
processing. 

  
Policymakers 

In another scenario, policymakers grapple with the challenge of formulating effective 
water management policies amidst fluctuating environmental conditions and 
competing socioeconomic demands. By integrating remote sensing tools into their 
decision-making processes, policymakers gain access to comprehensive data sets 
that illuminate water usage patterns, agricultural dynamics, and environmental 
stressors at various spatial and temporal scales. Leveraging the output of the 
developed solution, they can assess the impact of existing policies, identify areas of 
vulnerability, and anticipate future water resource trends with greater accuracy. 

For instance, policymakers may use the developed solution data to evaluate the 
efficacy of water conservation initiatives, such as irrigation efficiency programs or 
land-use regulations. By analyzing indicators like land cover changes, vegetation 
health, water requriement and availability over time, they can gauge the effectiveness 
of different policy interventions and adjust strategies accordingly.  
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3. Algorithm Overview  

3.1. Objectives of the Algorithm  

The developed solution allows to map ETa and thus the actual water consumption of 
the cultivated crops. The main cultivated crops present in the test site are :  wheat, 
maize and peanuts, representing 40% of the total cultivated area. 

This algorithm utilizes Earth Observation (EO) data (hyperspectral and multispectral) 
and is designed to enhance agricultural practices in desert regions with sparse 
vegetation. By leveraging hyperspectral and multispectral information, the algorithm 
provides a comprehensive understanding of the water consumption patterns of 
cultivated crops. 

The multifaceted objectives of the algorithm include crop growth monitoring, enabling 
farmers to track the development of their crops over time. Additionally, it serves as a 
valuable tool for stressed crop monitoring, allowing for the early detection of signs of 
stress or disease. Furthermore, the algorithm contributes to yield prediction, providing 
farmers and organizations with insights into potential harvest outcomes. The 
parameters of water productivity and water use efficiency are also key focuses, 
empowering stakeholders to optimize resource allocation and foster sustainable 
agricultural practices in challenging desert environments. In essence, this algorithm 
goes beyond conventional monitoring by providing a holistic approach to precision 
agriculture, supporting water conservation, and bolstering the resilience of crop 
cultivation in arid landscapes. 

 

 

 

 

Crop growth 
monitoring

Stressed crop 
monitoring

Yield 
prediction

Water 
productivity

Water use 
efficiency

Figure 3-1: Objectives of the algorithm aiming crop growth monitoring 
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4. Literature Review 

4.1. Existing Evapotranspiration Calculation Methods 

Evapotranspiration plays a crucial role in the hydrological cycle, influencing water 
resource management and irrigation scheduling. It encompasses the evaporation of 
water from various surfaces like water bodies, land, and moist vegetation, as well as 
the transpiration process by plants (Wanniarachchi and R. Sarukkalige, 2022; Chen 
and Liu 2020). Distinguishing between evaporation and transpiration is challenging, 
so they are often collectively referred to as evapotranspiration (Stoy  et al., 2019; 
Miralles et al., 2020). There is a continuous focus on accurately estimating 
evapotranspiration, especially in arid and semiarid regions with irrigation.  

Evapotranspiration can be categorized primarily into potential, reference, and actual 
types. Potential evapotranspiration (ETp) occurs when both soil and plant surfaces 
are wet, and it relies on surface attributes such as roughness and atmospheric 
conditions. However, since the simultaneous wet conditions of soil and plant surfaces 
is not always the case, the practical utility of ETp is limited, mainly serving as a 
benchmark for the maximum evapotranspiration rate (Guo et al., 2026; Gebremedhin 
et al., 2022).  

To mitigate some of the uncertainties surrounding ETp, Doorenbos and Pruitt 1977, 
proposed adopting the concept of reference evapotranspiration (ET0), which could 
function as a consistent climatic indicator for evapotranspiration. ET0 represents the 
rate at which soil moisture, if readily available, would evaporate under specific 
atmospheric conditions and on a particular type of reference surface. Typically, the 
leaf surfaces of a well-watered reference crop are not saturated, resulting in some 
minimum surface resistance. When estimating actual evapotranspiration (ET), factors 
such as crop cover (e.g., leaf area) and growth stage (e.g., maturation) are accounted 
for by relating them to ET0 through a crop coefficient (Kc). In instances of non-
standard conditions or potential water stress, the term evapotranspiration refers to 
actual evapotranspiration (ETa). 

Evapotranspiration can be directly measured or estimated based on field 
measurements, but it can also be estimated using remote sensing and developed 
models. 

4.1.1. Most common/used direct measurements methods 

Direct field measurements of ETa through various instruments offer the advantage of 
obtaining precise values for a specific site. However, these instruments are costly, 
require time-consuming data collection and maintenance, and often need calibration 
for long-term estimation based on meteorological variables.  

The most accurate ETa measurements are achieved using lysimeters (Williams and 
Ayars 2005), Bowen Ratio Energy Balance Systems (Irmak and S. Irmak 2008), and 
the eddy covariance technique (Baldocchi 2003).  

4.1.1.1. Lysimeters  

Lysimeter is a field equipment measures ET by controlling small environmental units 
for water balance monitoring. These devices, categorized into water balance 
lysimeters and weighing lysimeters, are useful for calibrating ET estimation equations 
and models. They help mitigate measurement errors from other systems, like wind 
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and rain gauges, but their high cost and maintenance requirements make them 
impractical for continuous monitoring. 

 

4.1.1.2. The Bowen ratio  

The Bowen ratio energy balance method is a reliable technique for 
micrometeorological conditions involving the measurement of air-temperature and 
water vapor gradients over the land surface. It estimates latent heat flux for short 
periods, but its accuracy can be affected by soil water availability and measurement 
errors in net radiation and soil heat flux. Overestimation may occur under certain 
conditions, such as positive or negative sensible heat flux. 

 

4.1.1.3. Eddy covariance  

Eddy covariance is a direct measurement method that estimates water vapor flux 
based on principles established in the 1950s. It relies on covariance between vertical 
wind velocitys and specific humidity, utilizing turbulent wind motion at the surface. 
Advances in measurement equipment have facilitated its increased usage, allowing 
for the measurement of instantaneous eddies' vertical speed and specific humidity 
fluctuations. 

Figure 4-1: Lysimeters in vadose zone, (a) instrumentation and (b) installed lysimeter 

Figure 4-2: The Bowen ratio stations in Logan, UT, USA 
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4.1.2. Most common/used ET estimation methods 

When the above-mentioned techniques are unavailable, ETa can still be indirectly 
estimated using information such as weather and radiation data. Numerous models 
were developed including both empirical and physically based analytical methods, 
such as the Penman, Penman-Monteith, Thornthwaite, and Priestley-Taylor methods. 
While empirical methods like Stanghellini and Hargreaves-Samani are 
computationally efficient, they may lack accuracy over large areas with diverse land 
surface characteristics. Physically based analytical methods offer better estimations 
but require extensive data inputs. 

The different methods, advantages and disadvantages are presented in the following 
table. 

Type Method  Advantages  Disadvantages 

 Penman Easy to apply 
Underestimates ET under 
high movement conditions of 
atmospheric air masses 

Combined 

FAO Penman-
Monteith  

Provides satisfactory 
results 

considers many components, 
which may result in complex 
calculations 

ASCE-EWRI  
Standardized 
PM 

Provides ET0 for both 
grass and alfalfa (hourly 
and daily) 

Using a fixed ratio of  
surface resistance for the 
entire day may induce some 
errors in estimating ET0 

Temperature
-based 
 

Thornthwaite Reliable for long-terms 
Underestimates the ET during 
the summer and is not precise 
for short terms 

Blaney-Criddle 
Easy to use and the data 
is usually available 

The crop coefficient depends 
a lot on the climate 

Blaney-Criddle 
(FAO) 

The given crop 
coefficient depends less 
on the climate 

In high elevations, coasts, 
and small islands, there is no 
relation between temperature 
and solar radiation  

Hargreaves 
Requires a minimum of 
climatological data 

Underestimates ETP on the 
coasts and under high 
movements of air masses. 

Figure 4-3: Schematic of flux tower measurements as part of the eddy covariance method 
https://www.neonscience.org/data-collection/flux-tower-measurements) 

Table 4-1: Advantages and disadvantages of notable ET estimation models 

https://www.neonscience.org/data-collection/flux-tower-measurements
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Hargreaves 
and Samani 

Requires only maximum 
and minimum 
temperature data 

Needs to be evaluated in 
many locations for its 
acceptance 

Linacre Precise on annual basis 
Precision decreases on daily 
base 

Radiation-
based 
 

Makkink 
Good for humid and cold 
climates 

It is not reliable in arid regions  

Priestly Taylor Reliable in humid areas Not adequate for arid zones 

Stephens-
Stewart 

Reliable on the western 
side of the USA (where it 
was developed) 

Should be evaluated in other 
locations 

Jensen-Haise 
Reliable under calm 
atmospheric conditions  

Underestimates ET under 
conditions of high movement 
of atmospheric air masses. 

The FAO Penman-Monteith (FAO PM) method is widely regarded as a universal 
standard for reference evapotranspiration (ET0) estimation, offering good results 
compared to lysimeter measurements. However, its use may be limited by the 
availability of input variables, which can sometimes be estimated. Various studies 
have evaluated different ET0 models globally, with the FAO PM method consistently 
showing adaptability and accuracy. 

Despite its effectiveness, implementing the FAO PM method requires calculating 
canopy surface resistance and access to weather data records. Nonetheless, it 
remains a preferred choice for ET0 estimation due to its reliability and widespread 
adoption. 

In the project framework, the FAO PM method is used for ET0 estimation, followed by 
the incorporation of crop and water stress coefficients to assess actual 
evapotranspiration (ETa) and validate the model. 

4.1.3. Most common/used remote sensing-based models 

Many remote sensing models for ET estimation exist, each classified based on 
different criteria. Adopting the classification into temperature-based and conductance-
based models. The listed bellow methods are thoroughly elucidated, with explicit 
references to their respective authors, in the state-of-the-art deliverable (D3). 

4.1.3.1. Temperature-based ET Models: 

Simple Surface Energy Balance Model: This model utilizes radiometric temperature 
to estimate sensible heat flux and subsequently ET. It was developed using an 
airplane-mounted thermal sensor to obtain radiative temperature data for various 
surface types, allowing for the estimation of soil moisture and ET using a basic surface 
energy budget model. 

Regional ET Model Using Crop Surface Temperature: Developed by Soer in 1980, 
this model maps actual evapotranspiration using surface temperatures and energy 
balance equations. It was initially tested for grassland in the Netherlands using 
measurements from a thermal sensor mounted over a crop canopy, along with 
meteorological and soil variables measurements. 

Surface Energy Balance Algorithm for Land (SEBAL) Model: Originally developed 
for regions including Egypt, Spain, and Niger, SEBAL has been widely used for ET 
estimation. It was calibrated and validated using data from agrometeorological 
stations and flux sites in semi-arid regions, demonstrating high simulation accuracy 
with minimal ground-based data requirements. 
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Surface Energy Budget System (SEBS): SEBS estimates atmospheric turbulent 
fluxes and surface evaporative fraction using remote sensing-derived data, 
meteorological parameters, and radiation data. It consists of modules for deriving 
energy balance terms, stability parameters, and roughness length for heat transfer, 
enabling ET estimation for different surface conditions. 

Mapping Evapotranspiration at High Resolution with Internalized Calibration 
(METRIC) Model: Built upon the SEBAL process, METRIC incorporates substantial 
refinements for improved accuracy. It accounts for temperature variations over 
topographical variations and uses standardized equations for energy balance 
calibration, enabling high-resolution ET mapping without specific crop classification. 

Two-Source Energy Balance (TSEB) Model: Developed to simulate heat fluxes 
from vegetation and soil separately, TSEB incorporates an equation to calculate the 
soil resistance using wind speed near the soil surface. It allows for separate estimation 
of sensible heat for vegetation and soil components, enabling more detailed ET 
modelling. 

Atmosphere-Land Exchange Inverse (ALEXI): ALEXI enhances ET estimation by 
incorporating a new component based on time-integrated planetary boundary layer 
(PBL) thermal energy. This addition improves sensible heat flux estimation, 
particularly in the morning when the PBL is warming up. 

Disaggregated ALEXI (DisALEXI): Building upon ALEXI, DisALEXI disaggregates 
large-pixel sensible heat flux estimates into smaller pixels using TSEB. By utilizing 
both high and low-resolution remote sensing images, it provides high-resolution 
distributions of sensible and latent heat fluxes for regional ET mapping. 

Various Contextural ET Models: These models utilize spatial contextual information 
from remote sensing data for ET estimation. Notable examples include TEFM, TIM, 
S-SEBI, and others, each employing different approaches to incorporate thermal and 
short-wave data for improved ET estimation accuracy. 

4.1.3.2. Conductance-based ET Models: 

Conductance-based ET models offer valuable alternatives to temperature-based 
models, especially in dense vegetated areas where sensible heat flux is small. These 
models utilize vegetation structural information from short-wave remote sensing to 
quantify leaf stomatal conductance, a key factor controlling transpiration. Unlike 
temperature-based models reliant solely on surface temperature measurements, 
conductance-based models can map spatially and temporally continuous ET, even in 
cloud-affected regions. Moreover, they are crucial for land modelling in Earth system 
models, as they can forecast future ET and hydrology by simulating required inputs. 
Additionally, conductance-based models integrate carbon cycle information, aiding in 
both ET and photosynthesis estimation. 

Penman-Monteith Model: Initially used for regional ET estimation, this model 
employs the Penman-Monteith equation to estimate ET0 based on meteorological 
conditions and adjusts it using factors like NDVI and Ks for actual ET estimation. 

Canopy Photosynthesis Models: These models focus on the close coupling 
between carbon and water cycles in plant canopies. Variants include leaf-level 
models, big-leaf canopy models, two-big-leaf models, and two-leaf models, each 
offering insights into leaf photosynthesis and its relation to stomatal conductance. 

ET Models Coupled with Plant Photosynthesis: Upscaling photosynthesis from 
leaf to canopy impacts ET model design. Modifications, like transitioning from big-leaf 
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to two-leaf models, aim to improve the coupling between carbon and water cycles. 
Widely used variants include the big-leaf Penman-Monteith model, the two-big-leaf 
model, and the two-leaf model. 

4.1.3.3. The proposed model 

The proposed model, known as the Stand-alone Remote Sensing Approach to 
Estimate Reference Evapotranspiration (SARE), offers a straightforward and efficient 
means of determining ETo using satellite data. At the core of the model are two key 
dynamic satellite data parameters: NDVI and Brightness Temperature (BT), which 
fluctuate in response to alterations in both land surfaces and atmospheric conditions. 

The SARE model revolves around five fundamental fractions: vegetation fractions 
(Vf), location fractions (Lf), elevation fractions (Ef), seasonal fractions (Sf), and 
thermal fractions (Tf). It integrates these fractions using three distinct types of data 
input (El-Shirbeny et al. 2022). Firstly, Spatial Variation Layers (SVL) provide location-
specific variability that remains consistent over time, encapsulating both Ef and Lf 
data. Secondly, Temporal Variation Layers (TVL) account for time-based changes, 
aligning with the seasonal variations in the northern hemisphere, and include Sf data. 
Lastly, Spatio-Temporal Variation Layers (STVL) capture the complex surface 
conditions of the Earth through the interactions of chemical, physical, and biophysical 
elements, as reflected in the electromagnetic radiation received by space-borne 
sensors. STVL data encompass both Tf and Vf components. 

The equations and concepts behind these parameters are elaborated in detail in the 
state-of-the-art deliverable (D3). 

4.2. Comparison and Rationale for the Chosen Approach 

Intercomparison of remote sensing-based ET estimation models reveals a range of 
advantages and limitations. Two-source models theoretically promise more accurate 
ET estimation over sparse vegetation by separately considering soil and vegetation 
for energy balance closure. Studies indicate superior accuracy with Two-Source 
Energy Balance (TSEB) compared to Surface Energy Balance Algorithm for Land 
(SEBS) in sparsely vegetated grasslands, while single-source models perform better 
in semiarid rangeland. 

Models like Surface Energy Balance Algorithm for Land (SEBAL) and Mapping 
Evapotranspiration at High Resolution with Internalized Calibration (METRIC) share 
similarities in theoretical frameworks and data requirements. METRIC offers 
advantages over SEBAL in mountainous areas and provides relatively more accurate 
ET estimates. 

Non-iterative single-source models, such as Surface Energy Balance Index (SEBI), 
Simplified Surface Energy Balance Index (S-SEBI), and Surface Energy Balance 
System (SSEB), calculate sensible heat (H) using evaporative fraction (EF). SSEB, 
verified for different climatic zones, tends to underestimate H in dry open areas. 

Iterative models like Two-Source Energy Balance Priestley–Taylor (TSEB-PT), Two-
Source Time Integrated Model (TSTIM), and Atmosphere-Land Exchange Inverse 
(ALEXI) show promising performance across various climatic zones. Among them, 
TSEB-PT has gained more attention in recent literature. 

Reflectance-based models estimate potential crop transpiration using crop 
coefficients (Kc) and actual ET values obtained from remote sensing methods. They 
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have been shown to reduce seasonal water requirements by 18% when used in 
irrigation schedules. 

Triangular and Trapezoidal methods have their own advantages and limitations. While 
the Triangular method requires a large number of pixels with wide ranges of soil 
moisture and vegetation fraction, the Trapezoidal method requires ground-measured 
data but fewer pixels. Both methods do not immediately detect water stress. 

Based on all the above, the Stand-alone Remote Sensing Approach to Estimate 
Reference Evapotranspiration (SARE) is proposed as a solution. It was used to 
estimate ET0 from 2005 to 2020 with LST and NDVI from MODIS. The results were 
validated against the FAO-Penman–Monteith applied over 35 ground meteorological 
stations distributed across Arab countries and covering all climate classes based on 
the most recent Köppen–Geiger climate classification (El-Shirbeny et al. 2022). The 
statistical analysis showed good results with average Root Mean Squared Error 
(RMSE) ranging from 6.9 to 17.3 (mm/month), a correlation coefficient (r) and an index 
of agreement (d) with more than 0.9. Being calibrated to the local climatological 
conditions, SARE will be selected in the framework of the present project. 

4.3. Previous Studies and Research 

The previous studies, research, and foundational theories of the aforementioned 
models have been extensively examined in State-of-the-art review document (D3) 
and the accompanying review article within the ongoing project framework titled 
"Advancements in Remote Sensing for Evapotranspiration Estimation: A 
Comprehensive Review of Temperature-Based Models". This comprehensive review 
delineates the methodologies employed, elucidates the chronological progression of 
modifications proposed and implemented by scholars, and accentuates both the 
merits and limitations of the models.  

Furthermore, the review confronts the enduring challenge of accurately gauging 
evapotranspiration across various scales. It furnishes a retrospective comparative 
analysis spanning a 15-year interval, empowering practitioners to discern the most 
suitable model for particular circumstances.  

Moreover, it deliberates on the strides made in satellite missions, notably the 
Copernicus Space Component (CSC) and Landsat Next, and their pivotal role in 
augmenting ET estimation models. 
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5. Algorithm Architecture 

5.1. High-Level Structure 

 

 

In the image above the steps from image acquisition up to taking the result products are 
presented. Once the input image is ordered and acquired it needs a pre-processing 
depending the sensor which is described in the section below. Then leveraging the optical 
data of input images NIR and VNIR bands are used for calculating NDVI and the Vegetation 
fraction which highly affected by NDVI. From thermal data the thermal bands are acquired, 
and LST & BT are extracted in order to calculate the KS and CWSI. Leveraging the 
geotransform attributes of the raster input the latitude and longitude are acquired so the 
location fraction can be acquired. The step then is to multiply the needed factors and get 

Figure 5-1: Workflow of the algorithm from Input image up to required Product outputs 
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reference evapotranspiration. Finally, the actual Evapotranspiration is extracted along with 
the products such as Eta, Ks and NDVI maps. 

5.2. Data Inputs 

The algorithm relies on various satellite data inputs, encompassing both hyperspectral 
and multispectral imagery, to facilitate precise and detailed analysis of field 
measurements. The main optical input comes from the PRISMA satellite, operated by 
the Italian Space Agency. PRISMA is known for its hyperspectral capabilities, 
capturing a wide range of spectral bands (400–2500 nm) with a spatial resolution of 
30 meters. A total of 13 PRISMA images were included, each selected to closely 
match a Landsat acquisition within a ±2-day window to ensure good alignment in time. 

To complement the hyperspectral data, Landsat imagery—specifically from Landsat 
8 and 9, operated by NASA and USGS—was used for its multispectral and thermal 
data. Landsat provides regular global coverage at a 30-meter resolution and plays a 
key role in the dataset thanks to its reliable revisit schedule and its provision of thermal 
data used to derive Land Surface Temperature (LST) and Brightness Temperature. A 
total of 52 Landsat images were initially collected across the time period of interest, 
spanning summer (May-September) 2023, winter (February-April) 2024, and summer 
(May-October) 2024. After filtering out cloudy scenes, 36 high-quality Landsat images 
remained, with roughly one usable image per week from May to September for the 
summer seasons and from February to April for the winter measurements. 

In addition, data from Sentinel-2 (part of ESA’s Copernicus Program) were included 
to provide additional optical support, especially when PRISMA was not available or 
when comparing across datasets. Like Landsat, 52 Sentinel-2 images were acquired 
and filtered down to 36 usable ones, based on cloud cover and temporal matching 
with Landsat acquisitions. 

Each satellite input was carefully chosen to align with specific field measurement 
dates, ensuring that data from different sensors were collected on the same or very 
similar days. This coordination across missions—PRISMA, Landsat, and Sentinel—
was essential for building a consistent and comparable dataset. 

To further enhance the dataset, ECOSTRESS data were used. ECOSTRESS, 
installed on the International Space Station, provides thermal data at 70-meter 
resolution. These observations offer valuable insights into land surface temperature 
patterns and vegetation stress. All standard ECOSTRESS products are delivered in 
HDF5 format, a widely used format in Earth observation. These files contain 
structured scientific data, including groups and datasets, which were converted to 
GeoTIFF for easier handling and accurate georeferencing. As mentioned in section 
12, the limited availability of ECOSTRESS was complemented by Landsat data for 
the thermal component. 
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To fill in occasional gaps—either due to unavailable dates or excessive cloud cover—
data from EMIT (Earth Surface Mineral Dust Source Investigation) were also explored. 
EMIT is a hyperspectral imaging mission developed by NASA’s Jet Propulsion 
Laboratory (JPL), designed to study surface mineral dust composition. It operates in 
the Visible and Near-Infrared (VNIR) spectral range, covering wavelengths from 380 
to 2500 nanometers, with 285 spectral bands. EMIT’s data are particularly useful for 
identifying surface mineral types and understanding their roles in atmospheric 
processes. The mission provides Level 2 (L2) products in GeoTIFF format, which 
include processed reflectance and mineral classification data ready for geospatial 
analysis. Although EMIT data are publicly available for selected regions and time 
windows, only two images were found that matched the study area and timeframe. 
Unfortunately, one image only partially covered the Area of Interest (AOI), and the 
other was largely cloud-obstructed, making both unsuitable for the analysis. 

In total, more than 72 satellite images from various missions were collected and used 
to generate maps and extract relevant information. These acquisitions cover three 
key time windows: summer 2023, winter 2024, and summer 2024. 

 

Figure 5-2: EO data available during the first cycle showing the coincidence with in situ data 

Figure 5-3: EO data available during the second cycle showing the coincidence with in situ data 

Figure 5-4: EO data available during the third cycle showing the coincidence with in situ data   
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The following tables report the datasets procured during the project, including 
PRISMA new acquisitions, Landsat data (in replacement of ECOSTRESS for the 
thermal component) and Sentinel-2 data as complementary dataset. 

Area of Interest El Salheya El Gedida - Sharqia governorate (northeast of Egypt) 

Area extent 13.800 hectares 

Location  30° 22' 35" and 30° 31' 19" N  31° 55' 24" and 32° 02' 38" E 

 

 PRISMA new acquisitions dataset 

  Acquisition mode Acquisition Date  

1 PRS_L2D_STD 10 June 2023 

2 PRS_L2D_STD 16 June 2023 

3 PRS_L2D_STD 15 July 2023 

4 PRS_L2D_STD 21 July 2023 

5 PRS_L2D_STD 17 September 2023 

6 PRS_L2D_STD 17 September 2023 

7 PRS_L2D_STD 30 December 2023 

8 PRS_L2D_STD 05 January 2024 

9 PRS_L2D_STD 09 February 2024 

10 PRS_L2D_STD 12 May 2024 

11 PRS_L2D_STD 26 July 2024 

12 PRS_L2D_STD 07 August 2024 

13 PRS_L2D_STD 18 August 2024 

 

  Landsat8 dataset 

  Acquisition mode Acquisition Date  

1 Landsat 8 L2SP 04 June 2023 

2 Landsat 8 L2SP 04 June 2023 

3 Landsat 8 L2SP 12 June 2023 

4 Landsat 8 L2SP 28 June 2023 

5 Landsat 8 L2SP 14 July 2023 

6 Landsat 8 L2SP 22 July 2023 

7 Landsat 8 L2SP 07 August 2023 

8 Landsat 8 L2SP 23 August 2023 

9 Landsat 8 L2SP 31 August 2023 

10 Landsat 8 L2SP 08 September 2023 

11 Landsat 8 L2SP 16 September 2023 

12 Landsat 8 L2SP 26 October 2023 

13 Landsat 8 L2SP 03 November 2023 

14 Landsat 8 L2SP 27 November 2023 

15 Landsat 8 L2SP 13 December 2023 

16 Landsat 8 L2SP 06 January 2024 

17 Landsat 8 L2SP 14 January 2024 

18 Landsat 8 L2SP 30 January 2024 

19 Landsat 8 L2SP 15 February 2024 

20 Landsat 8 L2SP 02 March 2024 

21 Landsat 8 L2SP 05 May 2024 

22 Landsat 8 L2SP 13 May 2024 

23 Landsat 8 L2SP 21 May 2024 

24 Landsat 8 L2SP 29 May 2024 

25 Landsat 8 L2SP 06 June 2024 

26 Landsat 8 L2SP 14 June 2024 

27 Landsat 8 L2SP 22 June 2024 

28 Landsat 8 L2SP 30 June 2024 

29 Landsat 8 L2SP 16 July 2024 

30 Landsat 8 L2SP 24 July 2024 
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31 Landsat 8 L2SP 01 August 2024 

32 Landsat 8 L2SP 09 August 2024 

33 Landsat 8 L2SP 17 August 2024 

34 Landsat 8 L2SP 25 August 2024 

35 Landsat 8 L2SP 02 September 2024 

36 Landsat 8 L2SP 10 September 2024 

 
 Sentinel-2 dataset 

  Acquisition mode Acquisition Date 

1 Sentinel-2 L2A 02 June 2023 

2 Sentinel-2 L2A 07 June 2023 

3 Sentinel-2 L2A 12 June 2023 

4 Sentinel-2 L2A 17 June 2023 

5 Sentinel-2 L2A 22 June 2023 

6 Sentinel-2 L2A 02 July 2023 

7 Sentinel-2 L2A 07 July 2023 

8 Sentinel-2 L2A 12 July 2023 

9 Sentinel-2 L2A 17 July 2023 

10 Sentinel-2 L2A 22 July 2023 

11 Sentinel-2 L2A 27 July 2023 

12 Sentinel-2 L2A 01 August 2023 

13 Sentinel-2 L2A 06 August 2023 

14 Sentinel-2 L2A 21 August 2023 

15 Sentinel-2 L2A 26 August 2023 

16 Sentinel-2 L2A 31 August 2023 

17 Sentinel-2 L2A 25 September 2023 

18 Sentinel-2 L2A 20 October 2023 

19 Sentinel-2 L2A 25 October 2023 

20 Sentinel-2 L2A 04 November 2023 

21 Sentinel-2 L2A 09 November 2023 

22 Sentinel-2 L2A 14 November 2023 

23 Sentinel-2 L2A 29 November 2023 

24 Sentinel-2 L2A 04 December 2023 

25 Sentinel-2 L2A 14 December 2023 

26 Sentinel-2 L2A 19 December 2023 

27 Sentinel-2 L2A 24 December 2023 

28 Sentinel-2 L2A 03 January 2024 

29 Sentinel-2 L2A 08 January 2024 

30 Sentinel-2 L2A 13 January 2024 

31 Sentinel-2 L2A 18 January 2024 

32 Sentinel-2 L2A 28 January 2024 

33 Sentinel-2 L2A 07 February 2024 

34 Sentinel-2 L2A 13 March 2024 

35 Sentinel-2 L2A 02 April 2024 

36 Sentinel-2 L2A 12 April 2024 

37 Sentinel-2 L2A 17 April 2024 

38 Sentinel-2 L2A 22 April 2024 

39 Sentinel-2 L2A 27 April 2024 

40 Sentinel-2 L2A 02 May 2024 

41 Sentinel-2 L2A 07 May 2024 

42 Sentinel-2 L2A 12 May 2024 

43 Sentinel-2 L2A 17 May 2024 

44 Sentinel-2 L2A 22 May 2024 

45 Sentinel-2 L2A 27 May 2024 

46 Sentinel-2 L2A 01 June 2024 
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47 Sentinel-2 L2A 06 June 2024 

48 Sentinel-2 L2A 11 June 2024 

49 Sentinel-2 L2A 16 June 2024 

50 Sentinel-2 L2A 21 June 2024 

51 Sentinel-2 L2A 26 June 2024 

52 Sentinel-2 L2A 01 July 2024 

53 Sentinel-2 L2A 11 July 2024 

54 Sentinel-2 L2A 16 July 2024 

55 Sentinel-2 L2A 21 July 2024 

56 Sentinel-2 L2A 26 July 2024 

57 Sentinel-2 L2A 31 July 2024 

58 Sentinel-2 L2A 05 August 2024 

59 Sentinel-2 L2A 10 August 2024 

60 Sentinel-2 L2A 15 August 2024 

61 Sentinel-2 L2A 20 August 2024 

62 Sentinel-2 L2A 25 August 2024 

63 Sentinel-2 L2A 30 August 2024 

64 Sentinel-2 L2A 09 September 2024 

65 Sentinel-2 L2A 19 September 2024 

66 Sentinel-2 L2A 24 September 2024 

67 Sentinel-2 L2A 29 September 2024 

 

 

5.3. Meteorological Data 

The data collection process involves gathering meteorological data and relies on the 
automatic meteorological station that is located at the edge of the agricultural farm at 
30°31'12.0"N 31°57'36.0"E and altitude of 5 m a.s.l. The station’s hourly 
measurements are averaged over a daily mean and are reported every two months. 
The meteorological data includes the average, the maximum and the minimum air 
temperatures, and the dew/frost point temperatures at a height of 2 meters. The data 
includes the relative humidity average as well, the precipitation, the wind speed and 
the solar radiation.  

 

 

An example of meteorological data is presented in the following table. 

Figure 5-5 : EMIT sensor image for the 26th of July 2024 (season 3) 
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Weather data of  Egypt-Ismailia-Ksaseen 

Latitude: 30.52 | Longitude: 31.96 | Altitude: 5 

Parameter(s): 

T2M: Temperature Average at 2 Meters  (°C) 

TMIN: Temperature at 2 Meters Minimum (°C) 

TMAX: Temperature at 2 Meters Maximum  (°C) 

TDEW: Dew/Frost Point at 2 Meters (°C) 

RH2M: Relative Humidity Average at 2 Meters (%) 

RAIN: Precipitation  (mm) 

WIND: Wind Speed at 2 Meters (m/s) 

SRAD: Solar Radiation (MJ/m^2/day) 

DATE T2M TMIN TMAX TDEW RH2M RAIN WIND SRAD 

25/08/2023 30.5 21.9 40.7 16.3 51.2 0 2.6 25.8 

26/08/2023 31.6 22.9 41.3 16.6 49.9 0 3 25.7 

27/08/2023 32.1 24.3 40.6 17 46.6 0 2.7 25.2 

28/08/2023 31.2 24.3 39.6 15.6 44 0 2.8 25.3 

29/08/2023 30.2 23 39.1 16.7 49.9 0 2.7 25.4 

30/08/2023 30.8 22.1 41 16 49.3 0 2 25.3 

… - - - - - - - - 

5.4. Processing Steps 

Initially, the image is opened, and a mask is applied to exclude any no-data values, 
commonly represented as 0 or -9999. Subsequently, the bands are read as arrays, 
enabling efficient manipulation and analysis of the pixel data. For Landsat images, an 
additional step may be necessary to convert the Digital Numbers (DN) to Top of 
Atmosphere (TOA) radiance, from which the Brightness Temperature (BT) and 
subsequently the Land Surface Temperature (LST) can be derived. For facilitating 
this though we used Band10 Level 1 Landsat data for BT and Band10 Level 2 Landsat 
data for LST. Furthermore, geotransform parameters of the input file are obtained, 
providing essential spatial referencing information. Leveraging the dimensions of the 
raster data, arrays are created to hold latitude and longitude values for each pixel, 
facilitating geospatial analysis and interpretation. These coordinates are then stored 
in .npy files for future reference. Additionally, the elevation Digital Elevation Model 
(DEM) file is read as an array, and adjustments are made to ensure compatibility with 
the desired range. Subsequently, the Elevation Fraction is calculated, with its value 
being proportional to the square of the DEM data. 

5.5. Pre-processing 

The PRISMA data come as Level 2 data which are geolocated and have the 
atmospheric correction radiance. PRISMA data come as HE5 files. In order to extract 
their corrected geolocation, they need to be opened first with PRISMA Toolbox which 

Table 5-1: Daily average meteorological data 
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is a software totally devoted to the interaction and manipulation of PRISMA satellite 
mission hyperspectral products. PRISMA Toolbox v1.0 allows to import, view and 
convert L1, L2B, L2C, L2D products in a very simple and immediate way (in MS 
Windows based PC). Thanks to its features the user can interact in a very simple and 
quick manner with all the spectral bands and the metadata of the HDF products 
without taking care of the HDF format. The desired information (bands) are extracted 
one per one. Because PRISMA comprises a high-spectral resolution VNIR-SWIR 
imaging spectrometer, it works in numerous, narrow and contiguous bands arranged 
from the visible to the near infrared (VNIR, Visible and Near InfraRed) and up to the 
infrared short-wave (SWIR, Short Wave InfraRed). This means that the bands Red 
and NIR that are needed for the calculations don’t correspond only to one band in 
PRISMA. For that, the average band was visualized and extracted in each case as a 
GeoTiff. 

The ECOSTRESS data, as referred to previously come as HDF5 files. As they come, 
they are not geolocated, and their format seems to be difficult to visualize and process 
directly. A script was used to convert ECOSTRESS swath data to projected GeoTiffs. 
Moreover, their resolution was changed from 70m to 30m either with the Software 
QGIS or with a Python script developed for upscaling/downscaling according to the 
input data needs.  When executing this script, a user will submit a desired output 
projection and input directory containing ECOSTRESS swath data products as 
command line arguments. The script begins by opening any of the ECOSTRESS 
products listed below that are contained in the input directory. Next, it uses the latitude 
and longitude arrays from the ECO1BGEO product to resample the swath dataset to 
a grid using nearest neighbor resampling (Pyresample/kdtree2) The script exports the 
gridded array as a GeoTIFF (GDAL).  

 Reading ECOSTRESS HDF5 Input Files: 

f = h5py.File(ecoList[0])             # Read in ECOSTRESS HDF5 file 

ecoName = ecoList[0].split('.h5')[0]  # Extract original filename 

print(ecoName) 

Loading Latitude and Longitude Arrays from the Corresponding ECO1BGEO 
File: These geolocation arrays are essential for defining the swath. 

g = h5py.File(geo[0]) 

geo_objs = [] 

g.visit(geo_objs.append) 

latSD = [str(obj) for obj in geo_objs if isinstance(g[obj], h5py.Dataset) and '/latitude' in 
obj] 

lonSD = [str(obj) for obj in geo_objs if isinstance(g[obj], h5py.Dataset) and '/longitude' 
in obj] 

lat = g[latSD[0]][()].astype(float) 

lon = g[lonSD[0]][()].astype(float) 

dims = lat.shape 
 

 
2 https://git.earthdata.nasa.gov/projects/LPDUR/repos/ecostress_swath2grid/browse 

https://git.earthdata.nasa.gov/projects/LPDUR/repos/ecostress_swath2grid/browse
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print(dims) 

Swath-to-Grid Conversion Using Nearest Neighbor Resampling (via 
pyresample): 

swathDef = geom.SwathDefinition(lons=lon, lats=lat) 

(The swathDef is later used for nearest-neighbor resampling with 
pyresample.kd_tree.) 

By default, the script will loop through and perform the steps for each science dataset 
(SDS) in the HDF5 file. There is an optional argument that allows you to select a 
subset of SDS layers within a given product. In this project’s case the only layers 
needed were Land Surface Temperature and Emissivity. 
 

To begin the data processing pipeline, the input image is opened in either JP2 or TIFF 
format, depending on the specific data source. Subsequently, an image composite is 
created by selecting and combining the desired bands relevant to the optical or 
thermal characteristics of the scene. For optical data from sensors like PRISMA, 
Sentinel, or ENMAP, the standard sequence comprises green, red, and near-infrared 
(NIR) bands, resulting in a three-band image composite. Conversely, for thermal data 
such as Landsat and ECOSTRESS, the composite consists of additional bands 
reflecting thermal properties. For Landsat, the sequence encompasses green, red, 
NIR, land surface temperature (LST), and emissivity, yielding a five-band composite. 
In contrast, ECOSTRESS data is composed of LST and emissivity bands, forming a 
three-band composite. Using QGIS, the resolution of these composites is adjusted to 
ensure consistency, typically converting them to a 30-meter resolution. This process 
facilitates co-registration, ensuring that images from different sources are spatially 
aligned for accurate analysis and interpretation. 

Before the algorithm calculations begin, a crucial pre-processing step involving 
Coordinate Reference Systems (CRS) is undertaken to ensure consistency and 
accuracy in subsequent calculations. Input data often arrive with varying CRS 
specifications, typically denoted as EPSG 4326 or 32636. These differing CRS 
assignments may arise from the diverse sources of the data, leading to potential 
spatial discrepancies. To address this, all data are uniformly transformed into a 
common CRS, namely EPSG 4326, at the onset of the algorithm. This standardization 
serves multiple purposes, foremost among them being the facilitation of seamless 
integration and comparison of spatial data layers. By aligning all datasets to a 
common CRS, spatial analyses and calculations can be executed accurately and 
effectively across different datasets 

5.6. Post-processing 

In situ measurements obtained from pivot-field measurements are characterized by 
specific latitude and longitude coordinates that serve as essential reference points for 
our analysis. In our data processing methodology, we compile a comprehensive list 
of latitude and longitude coordinates corresponding to the in-situ measurements and 
subsequently endeavor to identify the corresponding pixel within the satellite imagery 
output. By pinpointing the exact pixel associated with each latitude and longitude 
coordinate, we extract the pixel value as a representative measure of the 
environmental conditions observed at that specific location. This extracted pixel value 
serves as a pivotal anchor point. We implemented a calibration technique to ensure 
the accuracy and reliability of the pixel values corresponding to specific latitude and 
longitude coordinates. To achieve this, we applied a rounding approach to identify the 
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nearest pixel to the target latitude and longitude coordinates. Once the nearest pixel 
was identified, we expanded our analysis to include the surrounding pixels in a 3x3 
grid pattern, encompassing a total of 9 pixels. By considering the values of the 
adjacent pixels, we calculated the average value of this pixel neighborhood. This 
calibration process serves as a robust quality control measure, aimed at identifying 
and potentially mitigating anomalous pixel values, such as excessively high or 
irregular readings. By averaging the values of neighboring pixels, we mitigate the 
impact of potential outliers or inaccuracies, thereby enhancing the overall reliability 
and integrity of the dataset. This approach ensures that our analysis is based on 
robust and representative data, minimizing the influence of potential artifacts and 
discrepancies in the pixel values associated with specific latitude and longitude 
coordinates. 

5.7. Output Format and Interpretation 

The generated outputs include maps of evapotranspiration, Crop Water Stress Index 
(CWSI), and Normalized Difference Vegetation Index (NDVI), which are provided in 
TIFF format. These TIFF files are compatible with various Geographic Information 
System (GIS) software like QGIS and can also be uploaded to the EO Africa platform 
for further visualization and timeseries analysis. Each TIFF file retains the initial image 
name and includes pertinent information within its file name. To ensure spatial 
consistency, these images are reprojected to match the initial spatial extent, including 
the Coordinate Reference System (CRS), of the initial image. This reprojection 
process is facilitated using the Rasterio library, particularly the src.transform 
function, along with the GDAL datatype to specify the desired datatype for the new 
output TIFF files.  

Along with these outputs, three distinct QML files were created, one for each key 
output—NDVI, ETa (Actual Evapotranspiration), and CWSI (Crop Water Stress 
Index). These QML files were designed to apply custom styling and color gradients 
that correspond to typical value ranges for each index, aiding in the visual 
interpretation of the data. For NDVI and CWSI, the QML files follow their standard 
ranges: NDVI typically spans from -1 to +1, while CWSI values range from 0 to 1. For 
ETa, the range was dynamically set based on the minimum and maximum values 
found in each specific dataset. These QML files were created to enhance visualization 
and ease the understanding of the spatial patterns within the cultivated fields in the 
Area of Interest (AOI). The QML files were uploaded to the project’s platform, where 
they can be applied for immediate use in visualizing these indices across different 
timescales. By employing these pre-defined ranges and color schemes, the QML files 
offer consistent, standardized visuals that make it easier for users to interpret key 
parameters related to crop health, water usage, and stress levels. The inclusion of 
these QML styles, along with the TIFF files, allows for seamless integration with GIS 
tools like QGIS, ensuring that all data products can be visualized clearly and 
meaningfully within the platform’s interface. 
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6. Mathematical Formulas and Models  

6.1. Equations Used in Evapotranspiration Calculation 

For the calculation Evapotranspiration several factors needed to be calculated 
concerning the vegetation or the thermal behavior of the surface. 

Among these essential factors are the Normalized Difference Vegetation Index 
(NDVI), a fundamental indicator of vegetation vigor and density, which serves as the 
basis for calculating the Crop Coefficient (Kc) and Vegetation Fraction. NDVI values 
typically range from -1 to 1, with higher values indicating healthier vegetation cover. 

 

   

    

𝑉𝑓 =  1.013 –  𝑁𝐷𝑉𝐼5                                                                                                                           (2)   

𝐾𝑐 =  0.9 / (𝑁𝐷𝑉𝐼_𝑑𝑣 ∗  (𝑁𝐷𝑉𝐼 −  𝑁𝐷𝑉𝐼_𝑚𝑣))  +  0.3                                             (3) 

Land Surface Temperature (LST) and Brightness Temperature (BT) are key thermal 
parameters reflecting surface and atmospheric conditions, respectively, with expected 
ranges influenced by local climate measured in oC. LST and BT were needed for the 
Thermal factor’s calculation but also for the Ks index. The KS factor represents the 
thermal component of water stress, influenced by factors such as canopy temperature 
and atmospheric conditions and is highly connected to the CWSI which quantifies 
plant stress levels. 

𝐶𝑊𝑆𝐼 =  (𝐿𝑆𝑇 −  𝑎𝑖𝑟_𝑡𝑒𝑚𝑝_2𝑚) / (𝐿𝑆𝑇_𝑚𝑎𝑥 −  𝐿𝑆𝑇_𝑚𝑖𝑛)                                     (4) 

 

𝐾𝑠 =  (1 −  𝐶𝑊𝑆𝐼)                                                                                                  (5) 

The Julian Day serves as a temporal reference for calculating the Seasonal Fraction, 
capturing the influence of seasonal variations on evapotranspiration patterns.  

 

𝐿𝑓 =  1 −  0.0063 ∗  √𝑙𝑎𝑡2                                                                                      (6) 

𝑓1 = 1.13 ∗ 𝐿𝑓                                                                                                          (7) 

𝑓2 = 4.88 ∗ 𝐿𝑓 ∗ 𝑆𝑓2                                                                                                                                                        (8) 

𝑇𝑓 =  0.7 ∗  𝐵𝑇 ∗  (𝑓1 / 𝑓2)                                                                                    (9) 

𝐴 =  𝑌𝑒𝑎𝑟 / 100                                                                                                     (10) 

           𝐵 =  2 −  𝐴 +  (𝐴 / 4)                                                                                            (11) 

𝐽𝑑𝑎𝑦 =  (365.25 ∗  (𝑌𝑒𝑎𝑟 +  4716)) +  (30.6001 ∗  (𝑀𝑜𝑛𝑡ℎ +  1))  +  𝐷𝑎𝑦 +  𝐵 −
 1524.5                                                                                                                               (12) 

 𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 −  𝑅𝑒𝑑) / (𝑁𝐼𝑅 +  𝑅𝑒𝑑)                         (𝟏) 
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𝑆𝑓 =  1 / (1 +  0.033 ∗ 𝑐𝑜𝑠(2 ∗  𝜋 ∗  𝐽𝑑𝑎𝑦 / 365))                                                   (13) 

A Digital Elevation Model (DEM) is a representation of terrain elevation values at 
regularly spaced intervals. Using elevation data from a DEM to create a terrain model. 
In this process, elevation values from the DEM are used to construct a 3D 
representation of the terrain surface. 

𝐸𝑓 =  1 −  0.00011 ∗  √𝐷𝐸𝑀2                                                                               (14) 

6.2. Parameters and Variables 

Using the SARE model described in the proposal using the factors described in 
previous chapter Vf, Lf, Ef, Sf and Tf , which are respectively the vegetation, location, 
elevation, seasonal and thermal fractions which play a key role in the reference 
evapotranspiration. Consequently, the Kc and Ks factors which are an exact product 
of the thermal and optical data define the actual evapotranspiration of the specific 
place and at an exact date. 

𝐸𝑇𝑜 =  𝑉𝑓 ∗  𝐿𝑓 ∗  𝐸𝑓 ∗  𝑆𝑓 ∗  𝑇𝑓                                                                         (15) 

𝐸𝑇𝑎 =  𝐸𝑇𝑜 ∗  𝐾𝑐 ∗  𝐾𝑠                                                                                        (16) 
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7. Implementation Details  

7.1. Programming Language and Tools 

In the implementation of the algorithm, Python3 serves as the primary programming 
language, chosen for its versatility, readability, and extensive ecosystem of libraries. 
To facilitate the execution and experimentation of the algorithm, Jupyter notebooks 
serve as the preferred environment. These interactive notebooks provide a user-
friendly interface for running code, visualizing results, and documenting insights in a 
seamless manner. Moreover, the algorithm and associated notebooks are 
encapsulated within a Docker image, a lightweight containerization solution. This 
Docker image is constructed within a Linux virtual machine running Ubuntu 22.04 
LTS. The underlying hardware configuration features an Intel 11th Gen Core i7 
processor. 

 
Furthermore, while the algorithm is primarily designed to run within the specified 
Docker environment, efforts have been made to ensure compatibility with alternative 
setups. The codebase is thoroughly tested and verified to run seamlessly within virtual 
machines using tools such as Visual Studio Code or Conda environments. However, 
it's important to note that these alternative environments do not include the Docker 
image, necessitating additional configuration and setup steps for deployment. By 
accommodating diverse development and execution environments, the algorithm 
maximizes accessibility and flexibility. 

7.2. Code Structure  

The development and validation of the algorithm was done in the sequence 
developing > testing > validating. The code developed was open-source and 
deposited in a dedicated GitHub repository and properly documented to ensure its 
reusability as well as uptake by others. In particular, the code has been written in 
Python as it is a widely used programming language (especially in the EO community) 
benefiting also from many libraries available that can extend the analysis capabilities.  

7.3. Resources 

In the image below, the available resources for code implementation were provided. 
We utilized Oracle VirtualBox to create a virtual machine environment, incorporating 
Linux Ubuntu 22.04 as the operating system. Linux offered a rich array of command-
line utilities, programming libraries, and development frameworks. Additionally, the 
virtual environment facilitated experimentation, testing, and deployment of code in a 
controlled setting. 
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7.4. Dependencies and Libraries 

Key Libraries include the rasterio and GDAL libraries, essential for handling geospatial 
data and raster manipulation tasks with efficiency and precision. Additionally, the 
matplotlib library is employed for visualization purposes, enabling the generation of 
maps, plots and graphical representations of the algorithm's output. Alongside these 
specialized libraries, fundamental Python libraries such as math, numpy, sys, 
skimage, and datetime are utilized for various data manipulation, numerical 
computation, and date-time calculations. More analytically the version if each library 
used is :  

• rasterio==1.3.6 

• pandas==1.3.4 

• geopandas==0.12.2 

• osgeo==0.0.1 

• matplotlib==3.4.3 

• numpy>=1.21.1 

• pandas==1.3.4 

• geopandas==0.12.2 

• geopy==2.3.0 

• h5py==3.8.0 

• scikit-image==0.22.0 

Figure 7-1:  VM implementation set for the installation and running the algorithm  
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8. Results 

The analysis of different sensor combinations has been performed: Landsat (Thermal) – Landsat 
(VNIR), PRISMA (VNIR) – Landsat (Thermal), Sentinel 2 (VNIR) – Landsat (Thermal) and 
PRISMA (VNIR) -ECOSTRESS (Thermal). In each of these combinations, NDVI, Ks and the crop 
coefficients (Kc) were computed: a comprehensive comparison of these results was conducted 
to evaluate the algorithm's performance. 

In the maps and graphs below some of the results are presented showing the experimentations 
with different sets of data, the fluctuations of soil characteristics that affect the Evapotranspiration 
results and the importance of vegetation indexes such Kc, Ks and NDVI. Comparisons with in-
situ data for selected fields have been conducted to improve algorithm calibration. 

The procedure the team followed is the same for the results presented. As Eta intermediate, the 
actual evapotranspiration is presented with the use of Ks from in situ, instead of the EO 
calculated, for better accuracy and understanding of the results. 

8.1. Season 1 

8.1.1. Product maps 

 

 

 

Figure 8-1 : ETa map corresponding to the 16th of June 2023 with in situ data over the EO output 
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Figure 8-2: NDVI map corresponding to the 16th of June 2023 with in situ data over the EO output  
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8.1.2. Pivot 1 

This study involves a total of five pivots, but for now, we’ll focus on Pivot 1 as a test 
pivot. We’ll dive into the results from Pivot 1 in detail, using it as a starting point to 
explore key metrics like evapotranspiration (ETa) and crop performance. Pivot 1 was 
chosen because of its representative data, giving us a solid foundation to work with. 

The other four pivots will come into play in a separate Validation Report. They’ll be 
used to confirm and verify the findings we get from Pivot 1, making sure the results 
hold true across different areas. By comparing data from these other pivots, we can 
ensure the patterns and insights from Pivot 1 are reliable and consistent, giving us a 

Figure 8-3: CWSI map corresponding to the 16th of June 2023 with in situ data over the EO output 
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clearer picture of the overall system. This approach lets us test our methods 
thoroughly. 
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Figure 8-4: Evapotranspiration acquired from Landsat data for all season 1 regarding Pivot 1 compared to 
in situ  

Figure 8-5: Evapotranspiration acquired from Prisma data for all season 1 regarding Pivot 1 compared to in 
situ 
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8.2. Season2 

This study involves a total of five pivots, but the description is focused on Pivot 1 as 
a test pivot. We’ll dive into the results from Pivot 1 in detail, using it as a starting point 
to explore key metrics like evapotranspiration (ETa) and crop performance. Pivot 1 
was chosen because of its representative data, giving us a solid foundation to work 
with. 

The other four pivots will come into play in a separate validation report. They’ll be 
used to confirm and verify the findings we get from Pivot 1, making sure the results 
hold true across different areas. By comparing data from these other pivots, we can 
ensure the patterns and insights from Pivot 1 are reliable and consistent, giving us a 
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Figure 8-6: Kc vegetation index derived using NDVI from Prisma data during season 1 

Figure 8-7: Kc vegetation index derived using NDVI from Landsat data during season 1 
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clearer picture of the overall system. This approach lets us test our methods 
thoroughly. 

 

8.2.1. Pivot 1  
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Figure 8-8: Evapotranspiration acquired from Landsat data for all season 2 regarding Pivot 1 compared to 
in situ 

Figure 8-9: Evapotranspiration acquired from Prisma data for all season 2 regarding Pivot 1 compared to in 
situ 
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Figure 8-10: Chronological evolution of Eta for Pivot 1 from all selected sensors and in situ data 
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9. Machine Learning approach 

In this project, the goal was to enhance the estimation of evapotranspiration (ET) by integrating in 
situ measurements with Earth Observation (EO) data. The focus was on comparing in situ data with 
EO-based estimates for specific days when field measurements were available. However, the limited 
availability of these dates, especially across different seasons, posed a challenge for comprehensive 
analysis. To address this limitation, an alternative approach was developed to leverage the in situ 
data while introducing a new method for ET computation, beyond the commonly used SARE model. 
This approach aimed to improve temporal coverage and enhance the accuracy of ET estimates, 
providing an understanding of water dynamics across the study area. 

9.1. Introduction 

Machine learning (ML) involves developing algorithms that enable computers to learn 
from data and make predictions. In the conducted tests, two popular ML algorithms, 
Light Gradient Boosting Machine (LGBM) regressor (Guolin Ke et al, 2017) and 
Random Forest (RF) regressor (Buitinck, Lars, et al, 2013), were trained to assess 
their performance in predicting parameters related to evapotranspiration. The 
parameters that the algorithms were trained to predict are listed and described in 
Table 9-1Table 9-1: List of parameters and their description to be predicted by using 
ML approach below: 

Parameter Acronym Description 

Crop Stress Coefficient Ks 

A factor that reduces the crop 
coefficient to account for water 
stress conditions, indicating 
reduced water availability or 
drought. 

Actual 
Evapotranspiration 

ETa 

The actual rate of water loss 
from soil and plants, reflecting 
real conditions including water 
availability and crop type. 

9.2. Experimental design 

The experiment was designed to assess the relationship between satellite-derived 
features and ground truth data related to agricultural water use, specifically focusing 
on crop coefficient (Kc), crop stress coefficient (Ks), potential evapotranspiration 
(ET₀), and actual evapotranspiration (ETa). The study was conducted across several 
agricultural pivots, which are circular fields irrigated using center-pivot systems. 

For each pivot, ground truth data were meticulously collected. This data included 
measurements of Kc, Ks, ET₀, and ETa, obtained through field sensors and validated 
through manual observations. These ground measurements provided a reliable 
reference to compare with the satellite-derived estimates. 

To complement the ground truth data, images were acquired from two satellites: 
Landsat 8, which provides multispectral data with a 30-meter resolution, and PRISMA, 
a hyperspectral satellite offering a much finer spectral resolution. The images from 
Landsat 8 and PRISMA were first aligned using geometric and radiometric correction 
techniques to ensure that they accurately corresponded to the same spatial locations 
across the different datasets. 

Table 9-1: List of parameters and their description to be predicted by using ML approach 
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For each pixel entirely contained within the boundaries of a pivot, relevant features 
from the aligned satellite images were extracted. These features included thermal 
bands to estimate surface temperature and various hyperspectral indices that can be 
sensitive to specific crop conditions. The extracted satellite features for each pixel 
were then aggregated and associated with the corresponding ground truth data for 
the entire pivot. This integration allowed for a comprehensive dataset that linked 
remotely sensed information with on-the-ground measurements, facilitating a detailed 
analysis of how well satellite data can predict or reflect actual crop conditions and 
water use. 

This experimental design enabled us to evaluate the accuracy and reliability of 
satellite-derived estimates for Kc, Ks, ET₀, and ETa at the pivot scale, providing 
valuable insights into the potential of remote sensing technologies in precision 
agriculture and water resource management. 

9.3. Dataset building 

The dataset construction began with the extraction of features from satellite images 
provided by both the PRISMA and Landsat-8 satellites, corresponding to pixels that 
intersect cultivation pivots for 5 different dates (Table 9-2). Specifically, one image per 
satellite per date was used, resulting in a total of five PRISMA images and five 
Landsat-8 images.  All the information related to the data satellite missions are 
provided in 5.2. These features included spatial, spectral, textural, and ground data, 
which are essential for accurate analysis. Invalid or corrupted data points were 
carefully removed. 

PRISMA 
acquisition time 
closest to in-situ 

date 

Landsat-8 
acquisition time 
closest to in-situ 

date 

Date Crop 
cycle 

10 June 2023 12 June 2023 June 6th 2023 1 

16 June 2023 28 June 2023 June 16th 2023 1 

15 July 2023 14 July 2023 July 14th 2023 1 

21 July 2023 22 July 2023 July 22nd 2023 1 

26 July 2024 16 July 2024 July 16th 2024 3 

 

The final step in the dataset construction was the addition of several hyperspectral 
indices related to vegetation health and moisture content for both plants and soil. 
These indices are listed and described in Table 9-3 below: 

 

 

 

Table 9-2: Dates of data collected for both in situ and satellite measurements and related experimental 
crop cycle. 
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Name of 
Index 

Acronym Formula Satellite Reference Note 

Normalized 
Difference 
Water Index 

NDWI-
1640 

860𝑛𝑚 − 1649𝑛𝑚

860𝑛𝑚 + 1649𝑛𝑚
 

PRISMA IDB - Index DataBase  

Normalized 
Difference 
Water Index 

NDWI-
2130 

860𝑛𝑚 − 2130𝑛𝑚

860𝑛𝑚 + 2130𝑛𝑚
 

PRISMA IDB - Index DataBase  

Normalized 
Difference 
Vegetation 
Index 

NDVI 860𝑛𝑚 − 670𝑛𝑚

860𝑛𝑚 + 670𝑛𝑚
 

PRISMA IDB - Index DataBase  

Water Index WI 900𝑛𝑚

970𝑛𝑚
 

PRISMA IDB - Index DataBase  

Moisture 
Stress Index 

MSI 1649𝑛𝑚

820𝑛𝑚
 

PRISMA IDB - Index DataBase  

Simple Ratio 
Water Index 

SRWI 860𝑛𝑚

1240𝑛𝑚
 

PRISMA IDB - Index DataBase Calculated 
and added 
to the 
dataset at 
test 5 

Crop Stress 
Water Index 

CSWI 𝑇 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
 

Landsat8 Deliverable D6.1 Calculated 
and added 
to the 
dataset at 
test 5 

Normalized 
Difference 
Moisture 
Index 

NDMI 820𝑛𝑚 − 1600𝑛𝑚

820𝑛𝑚 + 1600𝑛𝑚
 

PRISMA IDB - Index DataBase  

Land 
Surface 
Temperature 

LST (BT / (1 + (0.00115 
* BT / 1.4388) * 
Ln(ε))) 

Landsat8 https://giscrack.com/how-
to-calculate-land-
surface-temperature-
with-landsat-8-images/ 

Calculated 
and added 
to the 
dataset at 
test 5 

Starting from the original dataset, several tests were conducted. Below, are described 
the main key tests that illustrate the steps taken to improve data handling and enable 
the development of algorithms capable of making predictions with real-world data. 

The main differences between the tests involve the addition or removal of specific 
data elements. All datasets were normalized based on their mean and standard 
deviation, except for normalized vegetation indices, which were normalized 
individually. To evaluate the performance of the model, R-squared (R²) was used as 

Table 9-3: Hyperspectral indices related to vegetation health and moisture content. 

https://www.indexdatabase.de/
https://www.indexdatabase.de/
https://www.indexdatabase.de/
https://www.indexdatabase.de/
https://www.indexdatabase.de/
https://www.indexdatabase.de/
https://www.indexdatabase.de/
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a key metric. R², also known as the coefficient of determination, measures the 
proportion of the variance in the dependent variable that is predictable from the 
independent variables. It ranges from 0 to 1, where a value closer to 1 indicates that 
the model explains most of the variability in the data, while a value closer to 0 suggests 
that the model fails to capture the underlying patterns. R² is particularly useful for 
understanding how well the model fits the data, with higher values reflecting a better 
fit 

The main key tests and their respective challenges are described below. 

9.3.1. Test n°1 

In the first test, the entire original dataset was used to train the RF and LGBM 
algorithms. Initially, the features were averaged for each pivot, and then the dataset 
was split into training and testing sets by randomly selecting features from the 
averaged data. The original dataset included data related to the pivot's location, such 
as latitude and longitude. After the first training run, both algorithms performed well, 
with R2 value shown in Table 9-4. However, some issues arose when analyzing the 
table of important variables. For both algorithms, latitude and longitude emerged as 
the most significant features. While geographic coordinates can be valuable for 
estimating evapotranspiration in global models, their dominance in a model trained on 
localized data suggests overfitting. This overreliance on location data may lead to a 
model that is poorly calibrated and less generalizable to other regions. 

 

Model Accuracy R2 

Ks ETa 

LGBM 0,79 0,91 

RF 0,81 0,90 

 

9.3.2. Test n°2 

In the second test, latitude and longitude were removed from the dataset, and a new 
training process was conducted. While the R2—particularly for ETa—decreased 
slightly, the overall performance remained good. Additionally, after predicting Kc, this 
variable was added back into the training dataset to improve accuracy. However, this 
introduced several challenges related to using predicted variables to boost the 
model's performance, as prediction errors could propagate through the model. 
Initially, this approach appeared promising, but critical issues soon emerged. 
Specifically, during the dataset splitting process, features were randomly assigned to 
the training and testing sets. This random selection allowed features from the same 
pivot, which shared the same ground truth measurements, to appear in both sets. 
This overlap resulted in data leakage, undermining the validity of the results. 
Moreover, incorporating predicted variables like Kc—an essential component of the 
ETa formula—into subsequent re-training steps increased the overall error, as 
inaccuracies compounded throughout the model. Due to these concerns, this 
approach will not be repeated in future tests. The results of this test are shown in 
Table 9-5 below:  

Table 9-4: R2 for each predicted parameter by using dataset built for test 1.  
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Model  Accuracy R2 

Ks  ETa  Eta(2a)  

LGBM  0,41  0,44  0,44  

RF  0,25  0,54  0,69  

 

9.3.3. Test n°3 

In the third test, latitude, longitude, and all Landsat data (except for band 10, due to 
its relationship with surface temperature) were excluded. The main issue, however, 
was that the same features were used for both training and test validation for each 
pivot. This led to overfitting, making the results unsuitable for real-world applications. 

The results of this test are reported in Table 9-6 below: 

 

Model  Accuracy R2 

Ks  ETa  

LGBM  0,35  0,40  

RF  0,21  0,61  

9.3.4. Test n°4 

In the fourth test, the dataset was split by assigning certain pivots for training and 
others for testing. All features were used for the training pivots, while for the testing 
pivots, the features were averaged to evaluate the algorithms. Although the results 
were not particularly strong, this approach provided a valuable foundation for 
developing models that could be applied to real-world scenarios. Additionally, the 
prediction of the ET₀ parameter was included in this test, further expanding the 
model's capabilities. Results are shown in Table 9-7: 

Model  Accuracy R2 

Ks  ETa  

LGBM  0,07  0,48  

RF  0,09  0,52  

Table 9-5: R2 for each predicted parameter by using dataset built for test 2. Eta(2a) represents the 
prediction of variable Eta after the addiction of predicted variable Kc into the train and test dataset. 

Table 9-6: R2 for each predicted parameter by using dataset built for test 3. 

Table 9-7:  R2 for each predicted parameter by using dataset built for test 4. 
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9.3.5. Test n°5 

In the fifth test, new indices were introduced, specifically Land Surface Temperature 
(LST), Crop Water Stress Index (CSWI), and Simple Ratio Water Index (SRWI), which 
are related to surface temperature and plant water content. The dataset was split in 
the same manner as in the fourth test, with certain pivots designated for training and 
others for testing. Incorporating these new indices led to an improvement in results to 
an acceptable level, especially considering the limited amount of data available. The 
details are shown in Table 9-8 below:  

Model 
Accuracy R2 

Ks ETa 

LGBM 0,15 0,73 

RF 0,05 0,54 

As reported in Table 8, the accuracy, in terms of R-squared, is considered acceptable, 
especially given that the features used for training and testing were kept distinct for 
each pivot. However, the results for the crop stress coefficient (Ks) were notably poor. 
This discrepancy may be attributed to timing differences between in-ground data 
collection and satellite acquisition. This issue is critical, particularly in arid and hot 
regions, where the timing of data collection can significantly affect the results. For 
example, if ground data is collected early in the morning or shortly after irrigation, it 
may differ substantially from satellite data, which is often collected during the hottest 
part of the day, potentially long after irrigation has occurred  

Following in Table 9-9 are reported the most ten important variables for Test n°5:  

Importance x predicted parameter 

 
LGBM RF 

 Ks ETa Ks ETa 

Band / 
hyper-
spectral 
index 

NDMI  Landsat_B10  VNIR_4  LST  

SWIR_41  SWIR_40  VNIR_3  Landsat_B10  

VNIR_40  SWIR_102  NDMI  NDMI  

SWIR_97  NDMI  SWIR_86  SWIR_49  

SWIR_40  WI  Landsat_B10  SWIR_50  

SWIR_89  SWIR_42  SWIR_42  SRWI  

Landsat_B10  SWIR_95  SWIR_136  VNIR_1  

SWIR_35  SWIR_101  SRWI  VNIR_2  

SWIR_98  CSWI  LST  VNIR_3  

SWIR_91  SWIR_97  VNIR_2  VNIR_4  

Table 9-8: R2 for each predicted parameter by using dataset built for test 5. 

Table 9-9: Most important variables for each parameter predicted in test 5. 
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9.3.6. Test n°6 

Considering the results obtained in Test n°5, further adjustments were made to 
improve the model's accuracy. Specifically, additional tests followed Test n°5, 
including the following steps: 

• Eliminating all indices that were not ranked among the top 10 most important 
variables; 

• Eliminating all indices that were not ranked among the top 20 most important 
variables 

A dimensionality reduction of the dataset was performed as a final step, selecting only 
the top twenty most important variables from Test n°5 to re-train the model and 
evaluate its capability to predict Eta and Ks. The top twenty variables were selected 
for each parameter and model, and a new model was trained using this reduced 
dataset. 

For most models, there was a decrease in accuracy, except for the LGBM model 
trained to predict Eta. The results are not shown for models where accuracy 
decreased, as the best models for these parameters are already presented in Test 
n°5. However, in the case of the LGBM model for Eta, the reduction in dimensionality 
improved the model’s accuracy, with the R² value increasing from 0.73 to 0.81, as 
shown in Table 9-10: R2 for each predicted parameter by using dataset built for test 5 
below: 

Model Accuracy R2 

ETa 

LGBM 0.81 

The variables used for this model are reported in Table 9-11 below: 

 

 

 List of 20 variables used for the training of the model 

Band / 
hyper- 
spectral 
index 

Landsat B10, NDMI, VNIR 1, SWIR 162, wi, SWIR 87, SWIR 42, 
SWIR 89, SWIR 102, SWIR 92, SWIR 41, SWIR 97, SWIR 40, 
SWIR 101, SWIR 98, SWIR 171, SWIR 62, SWIR 99, SWIR 95, 
CSWI 

 

9.4. Results of ML approach 

As explained in paragraph 9.3 and in the tests conducted, the aim was to identify the 
best variables for constructing an optimal dataset to estimate Eta and Ks. As 
previously noted, the results for predicting the Ks parameter were unsatisfactory, 

Table 9-10: R2 for each predicted parameter by using dataset built for test 5. 

Table 9-11: Variables composing the dataset of Test n°6 for LGBM model. 
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while good results were achieved for estimating Eta. Therefore, the following section 
will present and discuss the results of the best-trained model for Eta, which is the 
LGBM model from Test n°6. Additionally, the Eta maps generated for each date in the 
dataset will be shown below. 

As reported in paragraph 9.3.6, the best-performing model was the one trained with 
only 20 variables rather than the complete set of 236. This phenomenon is commonly 
known in machine learning as the Curses of Dimensionality (Taylor, C. Robert, 1993), 
where the accuracy of a classifier or regressor initially improves as the number of 
variables used for training increases, but after reaching a certain point, further 
dimensionality starts to degrade the model’s performance instead of enhancing it 
(Hughes, G.F, 1968; Trunk, G. V, 1979; B. Chandrasekaran; A. K. Jain, 1974).  

The correlation between the predicted values and those measured in the ground is 
shown below for all available data and each date analyzed. The correlation between 
observed and predicted values is quite high for each date and also for all data 
evaluated together. The only exception is the date of the third cycle harvest (16 July 
2024) shown in Figure 9-7, because the PRISMA images are not from the same day 
as the ground measurements. 

 

 

Figure 9-1: scatterplot showing the correlation between predicted and observed values for all data from 
the first crop cycle used in the training phase. 
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Figure 9-2: scatterplot showing the correlation between predicted and observed values for all available 
data from the first and third crop cycle. 

Figure 9-3: scatterplot showing the correlation between predicted and observed values for the date of June 
6th 2023. 
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Figure 9-4: scatterplot showing the correlation between predicted and observed values for the date of June 
16th 2023. 

Figure 9-5: scatterplot showing the correlation between predicted and observed values for the date of July 
14th 2023; 
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9.4.1. Eta maps 

An Eta map was generated for all the selected dates, where the correlation between 
predicted and observed values was shown in paragraph 9.4. It is reported below. As 
the summer season progresses, it is possible to observe how Eta becomes higher. 

Figure 9-6: scatterplot showing the correlation between predicted and observed values for the date of July 
22nd 2023. 

Figure 9-7: scatterplot showing the correlation between predicted and observed values for the date of July 
16th 2024. 



P22S1956-45-v2.1_D7.2_ATBD_and_products_specifications Page 55 of 65 

 

 
 

 
 

 

   
 
 

 

 

 

 

Figure 9-8: ETa map of June 6th, 2023. Inside the map are reported the study areas. 

Figure 9-9: ETa map of June 16th, 2023. Inside the map are reported the study areas. 
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Figure 9-10: ETa map of July 14th, 2023. Inside the map are reported the study areas. 

Figure 9-11: ETa map of July 22nd, 2023. Inside the map are reported the study areas. 
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Figure 9-12: ETa map of July 16th, 2024. Inside the map are reported the study areas. 
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10. Products Specifications 

The definition of the products specifications is a key element that drives the process of algorithm 
development. Technical specifications of the products developed on the demonstration site are 
described in this section using a set of tables whose content is adapted from the “Document 
Requirements Definition for Earth Observation Product Specifications” of the European Association 
of Remote Sensing Companies (EARSC)3.  

The following products will be demonstrated during the project: 

• Product 1: Mapping Actual evapotranspiration (ETa) for yield prediction, water efficiency, and 
water productivity assessment 

• Product 2: Mapping Crop Water Stress Index (CWSI) for preventive actions against water stress 

• Product 3: Mapping vegetation indices for monitoring of growth development stages  

 

 
 
3 EASRC Document: EARSC/guideline/2013/001, accessible for example at: 
https://mafiadoc.com/queue/earsc-product-specification-drd-guideline-v10-
v2_59d59b5cp723dd4bf42ce79a.html  

https://mafiadoc.com/queue/earsc-product-specification-drd-guideline-v10-v2_59d59b5c1723dd4bf42ce79a.html
https://mafiadoc.com/queue/earsc-product-specification-drd-guideline-v10-v2_59d59b5c1723dd4bf42ce79a.html
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Product 1: Mapping Actual Evapotranspiration (ETa maps)   

 Content 

Mapping of the actual crop evapotranspiration as a product of ET0 estimated using SARE, EO-
derived crop coefficient (Kc) and water stress coefficient (Ks) to predict yield, estimate water 
productivity, and water use efficiency. 

Geographic coverage 

• Demonstration site is in El Salheya under the Sharqia governorate in the north of Egypt 

Input data sources 

• Satellite data: hyperspectral (PRISMA) and thermal EO data (Landsat 8&9 and ECOSTRESS) 

• In situ data: Meteorological data (max and min air temperature, humidity, wind speed, radiation, 
precipitation); Crop type, planting date agricultural practices, harvest date; Plant density, leaf 
area index (LAI), plant height; Water application (time and amount); Soil moisture content; Water 
holding capacity, wilting point, total available water; Irrigation system efficiency/uniformity; Crop 
yield. 

 Methodology 

The solution is composed of three main sub-models: EO-based ETa, ground-based ETa, and EO-
based crop development monitoring. The ground-based ETa serves for the validation of the EO-
based ETa whose output is used for near real time crop development monitoring 

Spatial resolution and coverage 

• 30m (PRISMA) , 30m (Landsat) and 70m (ECOSTRESS) resolutions over the geographic 
coverage above 

Coordinate Reference System 

• WGS84 UTM36 (or according to the User needs) 

Accuracy assessment approach 

A statistical analysis performed for the model’s validation foresees the application of a series of 
statistical criteria including the mean error (ME), the mean relative error (MRE), the root mean 
square error (RMSE) and the correlation coefficient (r). 

Frequency 

• 15 days as baseline (according to EO data availability) 

Availability 

• 24 hours after data importing 

Delivery/Output format 

• GIS-ready GeoTIFF output 

• Delivery by WMS or downloading and publication on a web portal 

Data type 

• Geospatial raster data 

Raster coding 

• Cell by cell 

Metadata 

• INSPIRE standard compliant 

Table 10-1: Product 2 CWSI maps 
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  Product 2: Mapping Crop Water Stress Index (CWSI maps) 

 Content 

Map of Crop Water Stress Index the water stress map is fundamental to preventive irrigation 
management actions (adjustment of scheduling: volumes and frequency) against water stress the 
irrigation scheduling. 

Geographic coverage 

• Demonstration site is in El Salheya under the Sharqia governorate in the north of Egypt 

•  Input data sources 

• Satellite data: hyperspectral (PRISMA) and thermal EO data (Landsat 8&9 and ECOSTRESS) 

• In situ data: Meteorological data (max and min air temperature, humidity, wind speed, radiation, 
precipitation); Crop type, planting date agricultural practices, harvest date; Plant density, leaf 
area index (LAI), plant height; Water application (time and amount); Soil moisture content; Water 
holding capacity, wilting point, total available water; Irrigation system efficiency/uniformity; Crop 
yield. 

 Methodology  

The solution is composed of three main sub-models: EO-based ETa, ground-based Eta, and EO-
based crop development monitoring. The ground-based ETa serves for the validation of the EO-
based ETa whose output is used for near real time crop development monitoring 

Spatial resolution and coverage 

• 30m (PRISMA), 30m (Landsat) and 70m (ECOSTRESS) resolutions over the geographic 
coverage above 

•  
Coordinate Reference System 

• WGS84 UTM36 (or according to the User needs) 

Accuracy assessment approach 

A statistical analysis performed for the model’s validation foresees the application of a series of 
statistical criteria including the mean error (ME), the mean relative error (MRE), the root mean 
square error (RMSE) and the correlation coefficient (r). 

Frequency 

• 15 days as baseline (according to EO data availability) 

Availability 

• 24 hours after data importing 

Delivery/Output format 

• GIS-ready GeoTIFF output 

• Delivery by WMS or downloading and publication on a web portal 

Data type 

• Geospatial raster data 

Raster coding 

• Cell by cell 

Metadata 

• INSPIRE standard compliant 
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Product 3: Mapping Vegetation indices (Vegetation indices maps) 

 Content 

Mapping vegetation indices for monitoring crop development stages as a potential indicator for 
crop health including agronomic and engineering parameters (Distribution efficiency and 
uniformity). 

Geographic coverage 

• Demonstration site is in El Salheya under the Sharqia governorate in the north of Egypt 

Input data sources 

• Satellite data: hyperspectral (PRISMA) and thermal EO data (Landsat 8&9 and ECOSTRESS) 

• In situ data: Meteorological data (max and min air temperature, humidity, wind speed, radiation, 
precipitation); Crop type, planting date agricultural practices, harvest date; Plant density, leaf 
area index (LAI), plant height; Water application (time and amount); Soil moisture content; Water 
holding capacity, wilting point, total available water; Irrigation system efficiency/uniformity; Crop 
yield. 

 Methodology 

The solution is composed of three main sub-models: EO-based ETa, ground-based ETa, and EO-
based crop development monitoring. The ground-based ETa serves for the validation of the EO-
based ETa which output, is used for near real time crop development monitoring 

Spatial resolution and coverage 

• 30m (PRISMA) , 30m (Landsat) and 70m (ECOSTRESS) resolutions over the geographic 
coverage above 

Coordinate Reference System 

• WGS84 UTM36 (or according to the User needs) 

Accuracy assessment approach 

A statistical analysis performed for the model’s validation foresees the application of a series of 
statistical criteria including the mean error (ME), the mean relative error (MRE), the root mean 
square error (RMSE)and the correlation coefficient (r). 

Frequency 

• 15 days as baseline (according to EO data availability) 

Availability 

• 24 hours after data importing 

Delivery/Output format 

• GIS-ready GeoTIFF output 

• Delivery by WMS or downloading and publication on a web portal 

Data type 

• Geospatial raster data 

Raster coding 

• To be defined 

 

Table 10-2:  Product 3 Vegetation indices maps 
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11. Use Cases and Applications  

The developed solution offers versatile applications across water management and 
agricultural sectors. It can be effectively utilized by water managers, farmers, and 
governmental organizations to streamline various processes including irrigation 
scheduling, water accounting and allocation, and water rights administration. 

11.1. Real-world Scenarios 

11.1.1. Crop development 

The tool can be employed to monitor crop development by utilizing satellite imagery 
and ground-based sensors to track various indicators of plant growth and health over 
time. One commonly used indicator is the Normalized Difference Vegetation Index 
(NDVI). NDVI provides valuable information about vegetation density and vigor, 
serving as a proxy for crop development. By analyzing changes in NDVI values 
throughout the growing season, farmers and agronomists can assess the progression 
of crop growth, identify areas of stress or underperformance, and make informed 
decisions regarding management practices such as fertilization, irrigation, and pest 
control. 

11.1.2. Crop water stress  

Remote sensing can be instrumental in monitoring crop water stress by capturing key 
indicators of plant hydration status and physiological responses to water availability. 
One widely used metric for assessing crop water stress is the Crop Water Stress 
Index (CWSI), which can be derived from thermal infrared imagery. 

High CWSI values indicate greater levels of water stress within the crop canopy, 
signaling the need for irrigation or other water management interventions. However, 
even when information about CWSI is obtained in near real-time, it can serve as a 
valuable resource for informing and improving future irrigation practices. 

11.1.3. Crop yield estimation 

The output generated by the developed solution functions as an input for the yield 
estimation, following the prescribed equation.  

(1 −
𝑌𝑎

𝑌𝑚
) = 𝐾𝑦 (1 −

𝐸𝑇𝑎

𝐸𝑇𝑐
) 

▪ With Ym the maximum potential harvested yield (available from 
literature/libraries and/or local data sets), and Ky the crop-specific yield 
response factor (available from literature/libraries and/or local sets). 

▪ Ya (actual or harvested yield) will be validated using the in-field harvested yield 
available for the case study. 

The yield obtained serves as the input for estimating the water productivity, facilitating 
the assessment of efficiency in water usage within the agricultural system.  

11.1.4. Water productivity (Wp) 

The developed solution provides a comprehensive toolkit for evaluating the 
relationship between water input and crop productivity for evaluating the efficiency of 
water usage in agriculture through indicators such as Water productivity (Wp).  
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𝑊𝑈𝐸 =
Yield

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑤𝑎𝑡𝑒𝑟
 

This tool empowers farmers and water managers to tailor irrigation strategies 
according to specific crop requirements, thus maximizing agricultural output while 
minimizing water consumption. Moreover, the application of such tools enables the 
identification of areas with suboptimal water use practices, facilitating targeted 
interventions to enhance Wp and alleviate water scarcity concerns.  
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12. Challenges and Future Improvements 

12.1. Known Challenges 

Navigating the complexities of agricultural monitoring in arid regions like Egypt 
presented several formidable challenges throughout the project. Due to a lack of 
precise scheduling, instances occurred where irrigation events did not align with 
sensor imaging sessions (season 1), creating disparities in data collection timelines. 
This fact resulted in strange results where in situ values seemed a lot higher than the 
EO ones and pretty inconsistent with each other. This anomaly is attributed to 
irrigation events that precede the measurements. Following irrigation, the upper soil 
undergoes a drying phase due to wind and solar radiation. Consequently, the 
evaporation portion of evapotranspiration decreases during this period. Using the 
Time Domain Reflectometry (TDR) at the field level allows to access soil content at 
greater root depths, leading to an increase in field-based ETa measurements. 

Regarding season 2 and 3, field visits typically yield only a small number of data 
points, usually around 4 to 7 measurements per visit, making it tough to draw broad 
comparisons. Additionally, aligning Earth Observation (EO) data with in-situ collection 
is tricky due to the limited number of monitoring dates, which are often dictated by the 
specific pivot being considered. The needs for monitoring also shift depending on the 
crop’s growth stage—early growth stages may only require occasional observation, 
while more advanced stages, especially during peak irrigation, call for more frequent 
satellite passes to capture critical data. Inaccuracies in traditional in-situ data 
collection methods can lead to poor correlations between EO data and what's 
measured on the ground. Using more advanced techniques like eddy covariance flux 
towers could significantly improve the reliability of this data. Another issue is the 
mismatch between soil moisture levels derived from EO thermal data, such as the 
Crop Water Stress Index (CWSI), and those measured directly in the field using tools 
like TDR probes. Factors like soil water retention, sunlight, or wind may affect this 
relationship, leading to discrepancies. When it comes to assessing leaf temperature 
from satellite imagery to gauge crop water stress, the 30-meter spatial resolution can 
introduce errors, especially at the outer edges of pivots where bare soil may distort 
land surface temperatures. This makes it harder to accurately pinpoint “hot” and “cold” 
spots within the crop. 

Furthermore, the scarcity of ECOSTRESS data was a challenge, as the limited 
availability prevented the pre-ordering of images to synchronize with in-situ 
observations. Consequently, the reliance on Landsat data for thermal insights 
became imperative. Compounding these issues, some ECOSTRESS data were 
captured in the early morning hours, typically around 2 or 4 AM. In the desert climate 
of Egypt during the night, characterized by cooler temperatures and minimal 
atmospheric interference, such early captures introduced complexities in thermal 
measurements. Capturing LST relies on reflectance, making those dates difficult to 
work with because of this irrelevance. 

Under the same conditions, the ML approach shows promising results compared to 
the SARE approach, encouraging further investigation and exploration of this 
methodology. To enhance its potential, it is crucial to increase the quantity of data, 
allowing the construction of a more robust dataset. Expanding the volume of input 
data for training will enable the development of a more resilient and accurate ML 
model, ultimately improving performance and reliability. Based on the ML tests 
conducted and described in paragraph 9.3, as well as the type of data collected and 
the results discussed in paragraph 9.4, there is significant potential for machine 
learning to achieve better outcomes in the future. Achieving these improvements 
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requires a substantial increase in data collection, particularly through in-situ sampling 
conducted on dates that align with satellite acquisitions over the area of interest. A 
well-defined data sampling scheme is also crucial for improving consistency and 
accuracy. For example, synchronizing the timing of in-situ sampling with satellite 
acquisitions would be particularly important for critical variables like temperature, 
which can exhibit significant variations throughout the day in arid and hot 
environments. The ML results also suggest that this approach could be effectively 
scaled over time, as demonstrated in the results reported in paragraph 9.4.1 and 
illustrated in Figure 9-12, where the estimated ETA values align with data from 
previous years. 

 

 


